IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v278y2000i1p126-139.html
   My bibliography  Save this article

Sensitivity analysis of the stochastically and periodically forced Brusselator

Author

Listed:
  • Bashkirtseva, I.A
  • Ryashko, L.B

Abstract

The problem of sensitivity of nonlinear system limit cycle with respect to small stochastic and periodic disturbances is considered. Sensitivity analysis on the basis of quasipotential function is performed. The quasipotential is used widely in statistical physics (for instance by Graham for analysis of nonequilibrium thermodynamics problem). We consider an application of quasipotential technique to sensitivity problem. For the plane orbit case an approximation of quasipotential is expressed by some scalar function. This function (sensitivity function) is introduced as a base tool of a quantitative description for a system response on the external disturbances. New cycle characteristics (sensitivity factor, parameter of stiffness) are considered. The analysis of the forced Brusselator based on sensitivity function is shown. From this analysis the critical value of Brusselator parameter is found. The dynamics of forced Brusselator for this critical value is investigated. For small stochastic disturbances the burst of response amplitude is shown. For small periodic disturbances the period doubling regime of the transition to chaos scenario is demonstrated.

Suggested Citation

  • Bashkirtseva, I.A & Ryashko, L.B, 2000. "Sensitivity analysis of the stochastically and periodically forced Brusselator," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 278(1), pages 126-139.
  • Handle: RePEc:eee:phsmap:v:278:y:2000:i:1:p:126-139
    DOI: 10.1016/S0378-4371(99)00453-7
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437199004537
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/S0378-4371(99)00453-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bashkirtseva, Irina & Ryashko, Lev, 2017. "Stochastic sensitivity analysis of noise-induced order-chaos transitions in discrete-time systems with tangent and crisis bifurcations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 467(C), pages 573-584.
    2. Bashkirtseva, I. & Ryashko, L., 2020. "Analysis of noise-induced phenomena in the nonlinear tumor–immune system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
    3. Ryashko, L. & Bashkirtseva, I. & Gubkin, A. & Stikhin, P., 2009. "Confidence tori in the analysis of stochastic 3D-cycles," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 80(2), pages 256-269.
    4. Bashkirtseva, Irina & Ryashko, Lev, 2005. "Sensitivity and chaos control for the forced nonlinear oscillations," Chaos, Solitons & Fractals, Elsevier, vol. 26(5), pages 1437-1451.
    5. Irina Bashkirtseva & Davide Radi & Lev Ryashko & Tatyana Ryazanova, 2018. "On the Stochastic Sensitivity and Noise-Induced Transitions of a Kaldor-Type Business Cycle Model," Computational Economics, Springer;Society for Computational Economics, vol. 51(3), pages 699-718, March.
    6. Mandal, Partha Sarathi, 2018. "Noise-induced extinction for a ratio-dependent predator–prey model with strong Allee effect in prey," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 496(C), pages 40-52.
    7. Bashkirtseva, I.A. & Ryashko, L.B., 2004. "Stochastic sensitivity of 3D-cycles," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 66(1), pages 55-67.
    8. Bashkirtseva, Irina & Ryashko, Lev, 2013. "Stochastic sensitivity analysis of noise-induced intermittency and transition to chaos in one-dimensional discrete-time systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(2), pages 295-306.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:278:y:2000:i:1:p:126-139. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.