IDEAS home Printed from https://ideas.repec.org/a/eee/mateco/v46y2010i1p50-55.html
   My bibliography  Save this article

May's theorem in an infinite setting

Author

Listed:
  • Surekha, K.
  • Bhaskara Rao, K.P.S.

Abstract

We generalize May's theorem to an infinite setting, preserving the elementary character of the original theorem. We define voting scenarios and generalized voting scenarios, and prove appropriate versions of May's theorem. The case of generalized voting scenarios specialized to a countably infinite set of voters and the collections of all coalitions that have asymptotic density, shows that majority rule is the only aggregation rule that satisfies neutrality, irrelevance of null coalitions, anonymity, and positive responsiveness.

Suggested Citation

  • Surekha, K. & Bhaskara Rao, K.P.S., 2010. "May's theorem in an infinite setting," Journal of Mathematical Economics, Elsevier, vol. 46(1), pages 50-55, January.
  • Handle: RePEc:eee:mateco:v:46:y:2010:i:1:p:50-55
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4068(09)00075-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mark Fey, 2004. "May’s Theorem with an infinite population," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 23(2), pages 275-293, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bossert, Walter & Cato, Susumu, 2020. "Acyclicity, anonymity, and prefilters," Journal of Mathematical Economics, Elsevier, vol. 87(C), pages 134-141.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yariv, Leeat & Bartholdi, Laurent & Hann-Caruthers, Wade & Josyula, Maya & Tamuz, Omer, 2018. "Equitable Voting Rules," CEPR Discussion Papers 13316, C.E.P.R. Discussion Papers.
      • Laurent Bartholdi & Wade Hann-Caruthers & Maya Josyula & Omer Tamuz & Leeat Yariv, 2018. "Equitable voting rules," Papers 1811.01227, arXiv.org, revised Aug 2020.
    2. Bossert, Walter & Cato, Susumu, 2020. "Acyclicity, anonymity, and prefilters," Journal of Mathematical Economics, Elsevier, vol. 87(C), pages 134-141.
    3. Kari Saukkonen, 2007. "Continuity of social choice functions with restricted coalition algebras," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 28(4), pages 637-647, June.
    4. Frederik Herzberg, 2015. "Aggregating infinitely many probability measures," Theory and Decision, Springer, vol. 78(2), pages 319-337, February.
    5. Susumu Cato, 2011. "Pareto principles, positive responsiveness, and majority decisions," Theory and Decision, Springer, vol. 71(4), pages 503-518, October.
    6. Kumabe, Masahiro & Mihara, H. Reiju, 2008. "Computability of simple games: A characterization and application to the core," Journal of Mathematical Economics, Elsevier, vol. 44(3-4), pages 348-366, February.
    7. Laurent Bartholdi & Wade Hann‐Caruthers & Maya Josyula & Omer Tamuz & Leeat Yariv, 2021. "Equitable Voting Rules," Econometrica, Econometric Society, vol. 89(2), pages 563-589, March.
    8. Knoblauch, Vicki, 2016. "Elections generate all binary relations on infinite sets," Mathematical Social Sciences, Elsevier, vol. 84(C), pages 105-108.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:mateco:v:46:y:2010:i:1:p:50-55. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jmateco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.