IDEAS home Printed from https://ideas.repec.org/a/eee/mateco/v46y2010i1p50-55.html
   My bibliography  Save this article

May's theorem in an infinite setting

Author

Listed:
  • Surekha, K.
  • Bhaskara Rao, K.P.S.

Abstract

We generalize May's theorem to an infinite setting, preserving the elementary character of the original theorem. We define voting scenarios and generalized voting scenarios, and prove appropriate versions of May's theorem. The case of generalized voting scenarios specialized to a countably infinite set of voters and the collections of all coalitions that have asymptotic density, shows that majority rule is the only aggregation rule that satisfies neutrality, irrelevance of null coalitions, anonymity, and positive responsiveness.

Suggested Citation

  • Surekha, K. & Bhaskara Rao, K.P.S., 2010. "May's theorem in an infinite setting," Journal of Mathematical Economics, Elsevier, vol. 46(1), pages 50-55, January.
  • Handle: RePEc:eee:mateco:v:46:y:2010:i:1:p:50-55
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4068(09)00075-5
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mark Fey, 2004. "May’s Theorem with an infinite population," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 23(2), pages 275-293, October.
    2. Lauwers, Luc, 1998. "Intertemporal objective functions: Strong pareto versus anonymity," Mathematical Social Sciences, Elsevier, vol. 35(1), pages 37-55, January.
    Full references (including those not matched with items on IDEAS)

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:mateco:v:46:y:2010:i:1:p:50-55. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/jmateco .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.