IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v229y2025icp789-813.html
   My bibliography  Save this article

Nonlinear dynamics of a Darwinian Ricker system with strong Allee effect and immigration

Author

Listed:
  • Mokni, Karima
  • Ali, Halima Ben
  • Ghosh, Bapan
  • Ch-Chaoui, Mohamed

Abstract

In this paper, we investigate the complex dynamics of a Darwinian Ricker system through a comprehensive qualitative and dynamical analysis. Our research shows that the system exhibits Neimark–Sacker bifurcation, period-doubling bifurcation, and codimension-two bifurcations associated with 1:2, 1:3, and 1:4 resonances. These findings are derived using bifurcation and center manifold theories. We numerically illustrate all bifurcation results and chaotic features, providing a thorough understanding of the system’s behavior. This detailed examination of the Darwinian Ricker system, with a focus on the interplay between immigration and the strong Allee effect, enhances our understanding of the intricate mechanisms driving population dynamics. Furthermore, it highlights the significant implications for ecological modeling, particularly in predicting ecosystem responses to external perturbations such as climate change and species invasions.

Suggested Citation

  • Mokni, Karima & Ali, Halima Ben & Ghosh, Bapan & Ch-Chaoui, Mohamed, 2025. "Nonlinear dynamics of a Darwinian Ricker system with strong Allee effect and immigration," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 229(C), pages 789-813.
  • Handle: RePEc:eee:matcom:v:229:y:2025:i:c:p:789-813
    DOI: 10.1016/j.matcom.2024.10.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475424004087
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2024.10.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mokni, Karima & Ch-Chaoui, Mohamed, 2024. "A Darwinian Beverton–Holt model with immigration effect," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 217(C), pages 244-261.
    2. Chou, Yen-hsi & Chow, Yunshyong & Hu, Xiaochuan & Jang, Sophia R.-J., 2021. "A Ricker–type predator–prey system with hunting cooperation in discrete time," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 190(C), pages 570-586.
    3. Yousef, A.M. & Rida, S.Z. & Ali, H.M. & Zaki, A.S., 2023. "Stability, co-dimension two bifurcations and chaos control of a host-parasitoid model with mutual interference," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    4. Rajni, & Ghosh, Bapan, 2022. "Multistability, chaos and mean population density in a discrete-time predator–prey system," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    5. Zhang, Limin & Zhang, Chaofeng & He, Zhirong, 2019. "Codimension-one and codimension-two bifurcations of a discrete predator–prey system with strong Allee effect," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 162(C), pages 155-178.
    6. Mokni, Karima & Ch-Chaoui, Mohamed & Mondal, Bapin & Ghosh, Uttam, 2024. "Rich dynamics of a discrete two dimensional predator–prey model using the NSFD scheme," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 225(C), pages 992-1018.
    7. Liu, Xiaoli & Xiao, Dongmei, 2007. "Complex dynamic behaviors of a discrete-time predator–prey system," Chaos, Solitons & Fractals, Elsevier, vol. 32(1), pages 80-94.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gourav Mandal & Alejandro Rojas-Palma & Eduardo González-Olivares & Santabrata Chakravarty & Lakshmi Narayan Guin, 2025. "Allee-induced periodicity and bifurcations in a Gause-type model with interference phenomena," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 98(4), pages 1-33, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohammed O. Al-Kaff & Ghada AlNemer & Hamdy A. El-Metwally & Abd-Elalim A. Elsadany & Elmetwally M. Elabbasy, 2024. "Dynamic Behavior and Bifurcation Analysis of a Modified Reduced Lorenz Model," Mathematics, MDPI, vol. 12(9), pages 1-20, April.
    2. Binhao Hong & Chunrui Zhang, 2023. "Neimark–Sacker Bifurcation of a Discrete-Time Predator–Prey Model with Prey Refuge Effect," Mathematics, MDPI, vol. 11(6), pages 1-13, March.
    3. Zhong, Shihong & Xia, Juandi & Liu, Biao, 2021. "Spatiotemporal dynamics analysis of a semi-discrete reaction-diffusion Mussel-Algae system with advection," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    4. Karimov, Artur & Babkin, Ivan & Rybin, Vyacheslav & Butusov, Denis, 2024. "Matryoshka multistability: Coexistence of an infinite number of exactly self-similar nested attractors in a fractal phase space," Chaos, Solitons & Fractals, Elsevier, vol. 187(C).
    5. Akhtar, S. & Ahmed, R. & Batool, M. & Shah, Nehad Ali & Chung, Jae Dong, 2021. "Stability, bifurcation and chaos control of a discretized Leslie prey-predator model," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    6. Çelik, Canan & Duman, Oktay, 2009. "Allee effect in a discrete-time predator–prey system," Chaos, Solitons & Fractals, Elsevier, vol. 40(4), pages 1956-1962.
    7. Huang, Tousheng & Zhang, Huayong, 2016. "Bifurcation, chaos and pattern formation in a space- and time-discrete predator–prey system," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 92-107.
    8. Ali Yousef & Fatma Bozkurt Yousef, 2019. "Bifurcation and Stability Analysis of a System of Fractional-Order Differential Equations for a Plant–Herbivore Model with Allee Effect," Mathematics, MDPI, vol. 7(5), pages 1-18, May.
    9. Rajni, & Ghosh, Bapan, 2022. "Multistability, chaos and mean population density in a discrete-time predator–prey system," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    10. Zhang, Limin & Zhao, Min, 2009. "Dynamic complexities in a hyperparasitic system with prolonged diapause for host," Chaos, Solitons & Fractals, Elsevier, vol. 42(2), pages 1136-1142.
    11. Xiongxiong Du & Xiaoling Han & Ceyu Lei, 2022. "Behavior Analysis of a Class of Discrete-Time Dynamical System with Capture Rate," Mathematics, MDPI, vol. 10(14), pages 1-15, July.
    12. Shuo Liang & Wenlong Wang & Chunrui Zhang, 2024. "Pattern Dynamics Analysis of Host–Parasite Models with Aggregation Effect Based on Coupled Map Lattices," Mathematics, MDPI, vol. 13(1), pages 1-45, December.
    13. Yousef, A.M. & Rida, S.Z. & Ali, H.M. & Zaki, A.S., 2023. "Stability, co-dimension two bifurcations and chaos control of a host-parasitoid model with mutual interference," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    14. Xiaorong Ma & Qamar Din & Muhammad Rafaqat & Nasir Javaid & Yongliang Feng, 2020. "A Density-Dependent Host-Parasitoid Model with Stability, Bifurcation and Chaos Control," Mathematics, MDPI, vol. 8(4), pages 1-26, April.
    15. Bozkurt, Fatma & Yousef, Ali & Baleanu, Dumitru & Alzabut, Jehad, 2020. "A mathematical model of the evolution and spread of pathogenic coronaviruses from natural host to human host," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    16. Zhu, Lili & Zhao, Min, 2009. "Dynamic complexity of a host–parasitoid ecological model with the Hassell growth function for the host," Chaos, Solitons & Fractals, Elsevier, vol. 39(3), pages 1259-1269.
    17. Salman, S.M. & Yousef, A.M. & Elsadany, A.A., 2016. "Stability, bifurcation analysis and chaos control of a discrete predator-prey system with square root functional response," Chaos, Solitons & Fractals, Elsevier, vol. 93(C), pages 20-31.
    18. Guangye Chen & Zhidong Teng & Zengyun Hu, 2011. "Analysis of stability for a discrete ratio-dependent predator-prey system," Indian Journal of Pure and Applied Mathematics, Springer, vol. 42(1), pages 1-26, February.
    19. Hu, Guang-Ping & Li, Wan-Tong & Yan, Xiang-Ping, 2009. "Hopf bifurcations in a predator–prey system with multiple delays," Chaos, Solitons & Fractals, Elsevier, vol. 42(2), pages 1273-1285.
    20. Yanfei Du & Ben Niu & Junjie Wei, 2021. "Dynamics in a Predator–Prey Model with Cooperative Hunting and Allee Effect," Mathematics, MDPI, vol. 9(24), pages 1-40, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:229:y:2025:i:c:p:789-813. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.