IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v206y2023icp21-39.html
   My bibliography  Save this article

An efficient technique based on higher order Haar wavelet method for Lane–Emden equations

Author

Listed:
  • Swati,
  • Singh, Mandeep
  • Singh, Karanjeet

Abstract

This paper aims at introducing an effective computational technique for finding the solution to well-known Lane–Emden type equations by employing the higher order numerical method based on Haar wavelet expansions. A modified version of Haar wavelet method, known as Higher order Haar wavelet method has been discussed to enhance the accuracy and rate of convergence. This numerical method successfully tackles the singularity at x=0 and gives the approximated solution of the given Lane–Emden type equations in terms of higher order Haar wavelet expansions. Various numerical examples of Lane–Emden type equations have been discussed to demonstrate the validity and efficiency of the proposed algorithm. The numerical findings obtained by employing the present method have been presented with the aid of tables and graphs. Also, the comparisons made with well-known existing techniques, including finite difference schemes, various spline and decomposition methods, help to manifest the better accuracy and high efficiency of the present approach.

Suggested Citation

  • Swati, & Singh, Mandeep & Singh, Karanjeet, 2023. "An efficient technique based on higher order Haar wavelet method for Lane–Emden equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 206(C), pages 21-39.
  • Handle: RePEc:eee:matcom:v:206:y:2023:i:c:p:21-39
    DOI: 10.1016/j.matcom.2022.10.031
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475422004451
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2022.10.031?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Singh, Randhir & Guleria, Vandana & Singh, Mehakpreet, 2020. "Haar wavelet quasilinearization method for numerical solution of Emden–Fowler type equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 174(C), pages 123-133.
    2. Roul, Pradip & Prasad Goura, V.M.K., 2019. "B-spline collocation methods and their convergence for a class of nonlinear derivative dependent singular boundary value problems," Applied Mathematics and Computation, Elsevier, vol. 341(C), pages 428-450.
    3. Bulut, Fatih & Oruç, Ömer & Esen, Alaattin, 2022. "Higher order Haar wavelet method integrated with strang splitting for solving regularized long wave equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 197(C), pages 277-290.
    4. Goura, V.M.K. Prasad & Roul, Pradip, 2019. "Erratum to: B-spline collocation methods and their convergence for a class of nonlinear derivative dependent singular boundary value problems," Applied Mathematics and Computation, Elsevier, vol. 361(C), pages 198-201.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arsen Palestini & Simone Recchi, 2024. "Qualitative Properties of the Solutions to the Lane–Emden Equation in the Cylindrical Setup," Mathematics, MDPI, vol. 12(4), pages 1-11, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ramos, Higinio & Rufai, Mufutau Ajani, 2022. "An adaptive pair of one-step hybrid block Nyström methods for singular initial-value problems of Lane–Emden–Fowler type," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 193(C), pages 497-508.
    2. Xie, Qichang & Sun, Qiankun, 2019. "Computation and application of robust data-driven bandwidth selection for gradient function estimation," Applied Mathematics and Computation, Elsevier, vol. 361(C), pages 274-293.
    3. Roul, Pradip & Prasad Goura, V.M.K. & Agarwal, Ravi, 2019. "A compact finite difference method for a general class of nonlinear singular boundary value problems with Neumann and Robin boundary conditions," Applied Mathematics and Computation, Elsevier, vol. 350(C), pages 283-304.
    4. Roul, Pradip & Prasad Goura, V.M.K., 2020. "A high order numerical method and its convergence for time-fractional fourth order partial differential equations," Applied Mathematics and Computation, Elsevier, vol. 366(C).
    5. Roul, Pradip & Prasad Goura, V.M.K., 2022. "A superconvergent B-spline technique for second order nonlinear boundary value problems," Applied Mathematics and Computation, Elsevier, vol. 414(C).
    6. Amit K. Verma & Biswajit Pandit & Lajja Verma & Ravi P. Agarwal, 2020. "A Review on a Class of Second Order Nonlinear Singular BVPs," Mathematics, MDPI, vol. 8(7), pages 1-50, June.
    7. Roul, Pradip & Madduri, Harshita & Kassner, Klaus, 2019. "A sixth-order numerical method for a strongly nonlinear singular boundary value problem governing electrohydrodynamic flow in a circular cylindrical conduit," Applied Mathematics and Computation, Elsevier, vol. 350(C), pages 416-433.
    8. Khater, Mostafa M.A., 2023. "Computational simulations of propagation of a tsunami wave across the ocean," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    9. Ahsan, Muhammad & Bohner, Martin & Ullah, Aizaz & Khan, Amir Ali & Ahmad, Sheraz, 2023. "A Haar wavelet multi-resolution collocation method for singularly perturbed differential equations with integral boundary conditions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 204(C), pages 166-180.
    10. Goura, V.M.K. Prasad & Roul, Pradip, 2019. "Erratum to: B-spline collocation methods and their convergence for a class of nonlinear derivative dependent singular boundary value problems," Applied Mathematics and Computation, Elsevier, vol. 361(C), pages 198-201.
    11. Tomar, Saurabh & Dhama, Soniya & Ramos, Higinio & Singh, Mehakpreet, 2023. "An efficient technique based on Green’s function for solving two-point boundary value problems and its convergence analysis," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 210(C), pages 408-423.
    12. Shahni, Julee & Singh, Randhir, 2022. "Numerical simulation of Emden–Fowler integral equation with Green’s function type kernel by Gegenbauer-wavelet, Taylor-wavelet and Laguerre-wavelet collocation methods," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 194(C), pages 430-444.
    13. Shahni, Julee & Singh, Randhir & Cattani, Carlo, 2023. "An efficient numerical approach for solving three-point Lane–Emden–Fowler boundary value problem," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 210(C), pages 1-16.
    14. Vikash Kumar Sinha & Prashanth Maroju, 2023. "New Development of Variational Iteration Method Using Quasilinearization Method for Solving Nonlinear Problems," Mathematics, MDPI, vol. 11(4), pages 1-11, February.
    15. Shabanam Kumari & Arvind Kumar Singh & Utsav Gupta, 2024. "Collocation Technique Based on Chebyshev Polynomials to Solve Emden–Fowler-Type Singular Boundary Value Problems with Derivative Dependence," Mathematics, MDPI, vol. 12(4), pages 1-16, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:206:y:2023:i:c:p:21-39. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.