IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i4p592-d1340316.html
   My bibliography  Save this article

Collocation Technique Based on Chebyshev Polynomials to Solve Emden–Fowler-Type Singular Boundary Value Problems with Derivative Dependence

Author

Listed:
  • Shabanam Kumari

    (Department of Mathematics, Institute of Science, Banaras Hindu University, Varanasi 221005, India)

  • Arvind Kumar Singh

    (Department of Mathematics, Institute of Science, Banaras Hindu University, Varanasi 221005, India)

  • Utsav Gupta

    (Tanglin Trust School, 95 Portsdown Rd, Singapore 139299, Singapore)

Abstract

In this work, an innovative technique is presented to solve Emden–Fowler-type singular boundary value problems (SBVPs) with derivative dependence. These types of problems have significant applications in applied mathematics and astrophysics. Initially, the differential equation is transformed into a Fredholm integral equation, which is then converted into a system of nonlinear equations using the collocation technique based on Chebyshev polynomials. Subsequently, an iterative numerical approach, such as Newton’s method, is employed on the system of nonlinear equations to obtain an approximate solution. Error analysis is included to assess the accuracy of the obtained solutions and provide insights into the reliability of the numerical results. Furthermore, we graphically compare the residual errors of the current method to the previously established method for various examples.

Suggested Citation

  • Shabanam Kumari & Arvind Kumar Singh & Utsav Gupta, 2024. "Collocation Technique Based on Chebyshev Polynomials to Solve Emden–Fowler-Type Singular Boundary Value Problems with Derivative Dependence," Mathematics, MDPI, vol. 12(4), pages 1-16, February.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:4:p:592-:d:1340316
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/4/592/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/4/592/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Roul, Pradip & Prasad Goura, V.M.K., 2019. "B-spline collocation methods and their convergence for a class of nonlinear derivative dependent singular boundary value problems," Applied Mathematics and Computation, Elsevier, vol. 341(C), pages 428-450.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Swati, & Singh, Mandeep & Singh, Karanjeet, 2023. "An efficient technique based on higher order Haar wavelet method for Lane–Emden equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 206(C), pages 21-39.
    2. Goura, V.M.K. Prasad & Roul, Pradip, 2019. "Erratum to: B-spline collocation methods and their convergence for a class of nonlinear derivative dependent singular boundary value problems," Applied Mathematics and Computation, Elsevier, vol. 361(C), pages 198-201.
    3. Ramos, Higinio & Rufai, Mufutau Ajani, 2022. "An adaptive pair of one-step hybrid block Nyström methods for singular initial-value problems of Lane–Emden–Fowler type," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 193(C), pages 497-508.
    4. Xie, Qichang & Sun, Qiankun, 2019. "Computation and application of robust data-driven bandwidth selection for gradient function estimation," Applied Mathematics and Computation, Elsevier, vol. 361(C), pages 274-293.
    5. Roul, Pradip & Prasad Goura, V.M.K. & Agarwal, Ravi, 2019. "A compact finite difference method for a general class of nonlinear singular boundary value problems with Neumann and Robin boundary conditions," Applied Mathematics and Computation, Elsevier, vol. 350(C), pages 283-304.
    6. Roul, Pradip & Prasad Goura, V.M.K., 2022. "A superconvergent B-spline technique for second order nonlinear boundary value problems," Applied Mathematics and Computation, Elsevier, vol. 414(C).
    7. Amit K. Verma & Biswajit Pandit & Lajja Verma & Ravi P. Agarwal, 2020. "A Review on a Class of Second Order Nonlinear Singular BVPs," Mathematics, MDPI, vol. 8(7), pages 1-50, June.
    8. Roul, Pradip & Madduri, Harshita & Kassner, Klaus, 2019. "A sixth-order numerical method for a strongly nonlinear singular boundary value problem governing electrohydrodynamic flow in a circular cylindrical conduit," Applied Mathematics and Computation, Elsevier, vol. 350(C), pages 416-433.
    9. Roul, Pradip & Prasad Goura, V.M.K., 2020. "A high order numerical method and its convergence for time-fractional fourth order partial differential equations," Applied Mathematics and Computation, Elsevier, vol. 366(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:4:p:592-:d:1340316. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.