IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v216y2024icp30-48.html
   My bibliography  Save this article

Advanced numerical scheme and its convergence analysis for a class of two-point singular boundary value problems

Author

Listed:
  • Sriwastav, Nikhil
  • Barnwal, Amit K.
  • Ramos, Higinio
  • Agarwal, Ravi P.
  • Singh, Mehakpreet

Abstract

In the past decades, many applications related to applied physics, physiology and astrophysics have been modelled using a class of two-point singular boundary value problems (SBVPs). In this article, a novel approach based on the shooting projection method and the Legendre wavelet operational matrix formulation for approximating a class of two-point SBVPs with Dirichlet and Neumann–Robin boundary conditions is proposed. For the new approach, an initial guess is postulated in contrast to the boundary conditions in the first step. The second step deals with the usage of the Legendre wavelet operational matrix method to solve the initial value problem (IVP). Further, the resulting solution of the IVP is utilized at the second endpoint of the domain of a differential equation in a shooting projection method to improve the initial condition. These two steps are repeated until the desired accuracy of the solution is achieved. To support the mathematical formulation, a detailed convergence analysis of the new approach is conducted. The new approach is tested against some existing methods such as various types of the variational iteration method, considering several numerical examples to which it provides high-quality solutions.

Suggested Citation

  • Sriwastav, Nikhil & Barnwal, Amit K. & Ramos, Higinio & Agarwal, Ravi P. & Singh, Mehakpreet, 2024. "Advanced numerical scheme and its convergence analysis for a class of two-point singular boundary value problems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 216(C), pages 30-48.
  • Handle: RePEc:eee:matcom:v:216:y:2024:i:c:p:30-48
    DOI: 10.1016/j.matcom.2023.08.037
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475423003749
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2023.08.037?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:216:y:2024:i:c:p:30-48. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.