IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v187y2021icp17-29.html
   My bibliography  Save this article

Bayesian sample size determination in a single-server deterministic queueing system

Author

Listed:
  • Singh, Saroja Kumar
  • Acharya, Sarat Kumar
  • Cruz, Frederico R.B.
  • Quinino, Roberto C.

Abstract

Although queueing models in the mathematical field of queueing theory are mainly studied in the steady-state regime and practical applications are interested mostly in queues in transient situations subject to burst arrivals and congestion, their use is still justified as a first step towards a more complex and thorough analysis. In these practical applications, parameters such as the traffic intensity, which is the ratio between the arrival rate and service rate, are unknown and need to be estimated statistically. In this study, a Markovian arrival and deterministic single-server queueing system, known in Kendall notation as an M∕D∕1 queueing model, is considered. This is one of the simplest queueing models with deterministic service time and may be seen as an approximation of a variety of applications in the performance evaluation of production management, telecommunications networks, and other areas. The main goal of this manuscript is to propose a methodology to determine the sample size for an M∕D∕1 queueing system under the Bayesian setup by observing the number of customer arrivals during the service time of a customer. To verify the efficiency and efficacy of the proposed approach, an extensive set of numerical results is presented and discussed.

Suggested Citation

  • Singh, Saroja Kumar & Acharya, Sarat Kumar & Cruz, Frederico R.B. & Quinino, Roberto C., 2021. "Bayesian sample size determination in a single-server deterministic queueing system," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 187(C), pages 17-29.
  • Handle: RePEc:eee:matcom:v:187:y:2021:i:c:p:17-29
    DOI: 10.1016/j.matcom.2021.02.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475421000495
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2021.02.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sarat Kumar Acharya & Saroja Kumar Singh, 2019. "Asymptotic properties of maximum likelihood estimators from single server queues: A martingale approach," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 48(14), pages 3549-3557, July.
    2. E. Rahme & L. Joseph & T. W. Gyorkos, 2000. "Bayesian sample size determination for estimating binomial parameters from data subject to misclassification," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 49(1), pages 119-128.
    3. Saroja Kumar Singh & Sarat Kumar Acharya, 2019. "Equivalence between Bayes and the maximum likelihood estimator in M/M/1 queue," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 48(19), pages 4780-4793, October.
    4. Amit Choudhury & Arun Borthakur, 2008. "Bayesian inference and prediction in the single server Markovian queue," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 67(3), pages 371-383, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gorbunova, A.V. & Lebedev, A.V., 2022. "Nontransitivity of tuples of random variables with polynomial density and its effects in Bayesian models," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 202(C), pages 181-192.
    2. Singh, Saroja Kumar & Acharya, Sarat Kumar & Cruz, F.R.B. & Cançado, André L.F., 2023. "Change point estimation in an M/M/2 queue with heterogeneous servers," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 212(C), pages 182-194.
    3. Saroja Kumar Singh, 2022. "Change point problem for Markovian arrival queueing models: Bayes factor approach," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(6), pages 2847-2854, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Singh, Saroja Kumar & Acharya, Sarat Kumar & Cruz, F.R.B. & Cançado, André L.F., 2023. "Change point estimation in an M/M/2 queue with heterogeneous servers," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 212(C), pages 182-194.
    2. Martijn van Hasselt & Christopher R. Bollinger & Jeremy W. Bray, 2022. "A Bayesian approach to account for misclassification in prevalence and trend estimation," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(2), pages 351-367, March.
    3. Boris G. Zaslavsky, 2013. "Bayesian Hypothesis Testing in Two-Arm Trials with Dichotomous Outcomes," Biometrics, The International Biometric Society, vol. 69(1), pages 157-163, March.
    4. M. A. C. Almeida & F. R. B. Cruz & F. L. P. Oliveira & G. Souza, 2020. "Bias correction for estimation of performance measures of a Markovian queue," Operational Research, Springer, vol. 20(2), pages 943-958, June.
    5. Wesley O. Johnson & Chun-Lung Su & Ian A. Gardner & Ronald Christensen, 2004. "Sample Size Calculations for Surveys to Substantiate Freedom of Populations from Infectious Agents," Biometrics, The International Biometric Society, vol. 60(1), pages 165-171, March.
    6. T. Pham-Gia & N. Turkhan, 2005. "Bayesian decision criteria in the presence of noises under quadratic and absolute value loss functions," Statistical Papers, Springer, vol. 46(2), pages 247-266, April.
    7. Martin Ladouceur & Elham Rahme & Christian A. Pineau & Lawrence Joseph, 2007. "Robustness of Prevalence Estimates Derived from Misclassified Data from Administrative Databases," Biometrics, The International Biometric Society, vol. 63(1), pages 272-279, March.
    8. Sander Greenland, 2005. "Multiple‐bias modelling for analysis of observational data," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 168(2), pages 267-306, March.
    9. Paul Gustafson & Nhu D. Le & Refik Saskin, 2001. "Case–Control Analysis with Partial Knowledge of Exposure Misclassification Probabilities," Biometrics, The International Biometric Society, vol. 57(2), pages 598-609, June.
    10. Shovan Chowdhury, 2019. "On the Estimation of Performance Measures in a Single M/Ek/1 Queue," Working papers 301, Indian Institute of Management Kozhikode.
    11. Paul Gustafson, 2006. "Sample size implications when biases are modelled rather than ignored," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 169(4), pages 865-881, October.
    12. Zhuoyu Wang & Nandini Dendukuri & Madhukar Pai & Lawrence Joseph, 2017. "Taking Costs and Diagnostic Test Accuracy into Account When Designing Prevalence Studies: An Application to Childhood Tuberculosis Prevalence," Medical Decision Making, , vol. 37(8), pages 922-929, November.
    13. Stamey, James & Gerlach, Richard, 2007. "Bayesian sample size determination for case-control studies with misclassification," Computational Statistics & Data Analysis, Elsevier, vol. 51(6), pages 2982-2992, March.
    14. Bollinger, Christopher R. & van Hasselt, Martijn, 2017. "A Bayesian analysis of binary misclassification," Economics Letters, Elsevier, vol. 156(C), pages 68-73.
    15. Saroja Kumar Singh & Sarat Kumar Acharya, 2022. "A Bayesian inference to estimate change point for traffic intensity in M/M/1 queueing model," OPSEARCH, Springer;Operational Research Society of India, vol. 59(1), pages 166-206, March.
    16. Nandini Dendukuri & Elham Rahme & Patrick Bélisle & Lawrence Joseph, 2004. "Bayesian Sample Size Determination for Prevalence and Diagnostic Test Studies in the Absence of a Gold Standard Test," Biometrics, The International Biometric Society, vol. 60(2), pages 388-397, June.
    17. Saroja Kumar Singh, 2023. "Maximum Likelihood Estimation in Single Server Queues," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(1), pages 931-947, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:187:y:2021:i:c:p:17-29. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.