IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v168y2020icp111-121.html
   My bibliography  Save this article

Application of the graph cellular automaton in generating languages

Author

Listed:
  • Praba, B.
  • Saranya, R.

Abstract

The purpose of this research is to strengthen the core of Cellular Automaton using the concept of Graph theory and Automata theory. In this paper we introduce a new approach of defining the Graph Cellular Automaton GCA, V,I,δ consisting of set of vertices and input symbols along with the time evolution function δ. Using the Basic Linear Rules, we define the kth generation GCA. This method enables us to capture the complete characterization of the future generations. When the defined GCA is taken as a graph corresponding to a given finite automaton, then the language generated by the kth generation GCA is predicted corresponding to the fundamental basic linear rules. This enables us to predict the language of the kth generation automaton using all the 512 rules. All explained concepts are illustrated with suitable examples.

Suggested Citation

  • Praba, B. & Saranya, R., 2020. "Application of the graph cellular automaton in generating languages," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 168(C), pages 111-121.
  • Handle: RePEc:eee:matcom:v:168:y:2020:i:c:p:111-121
    DOI: 10.1016/j.matcom.2019.07.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475419302253
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2019.07.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Jia-Bao & Pan, Xiang-Feng, 2016. "Minimizing Kirchhoff index among graphs with a given vertex bipartiteness," Applied Mathematics and Computation, Elsevier, vol. 291(C), pages 84-88.
    2. Daniel Stevens & Suzana Dragićević, 2007. "A GIS-Based Irregular Cellular Automata Model of Land-Use Change," Environment and Planning B, , vol. 34(4), pages 708-724, August.
    3. Liu, Jia-Bao & Pan, Xiang-Feng & Hu, Fu-Tao & Hu, Feng-Feng, 2015. "Asymptotic Laplacian-energy-like invariant of lattices," Applied Mathematics and Computation, Elsevier, vol. 253(C), pages 205-214.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jia-Bao Liu & S. N. Daoud, 2019. "Number of Spanning Trees in the Sequence of Some Graphs," Complexity, Hindawi, vol. 2019, pages 1-22, March.
    2. Faxu Li & Hui Xu & Liang Wei & Defang Wang, 2023. "RETRACTED ARTICLE: Identifying vital nodes in hypernetwork based on local centrality," Journal of Combinatorial Optimization, Springer, vol. 45(1), pages 1-13, January.
    3. Wenyu Shi & Qiang Tang, 2023. "RETRACTED ARTICLE: Cost-optimized data placement strategy for social network with security awareness in edge-cloud computing environment," Journal of Combinatorial Optimization, Springer, vol. 45(1), pages 1-15, January.
    4. Li Zhang & Jing Zhao & Jia-Bao Liu & Salama Nagy Daoud, 2019. "Resistance Distance in the Double Corona Based on R -Graph," Mathematics, MDPI, vol. 7(1), pages 1-13, January.
    5. Sajjad, Wasim & Sardar, Muhammad Shoaib & Pan, Xiang-Feng, 2024. "Computation of resistance distance and Kirchhoff index of chain of triangular bipyramid hexahedron," Applied Mathematics and Computation, Elsevier, vol. 461(C).
    6. Wickramasuriya, Rohan Chandralal & Bregt, Arnold K. & van Delden, Hedwig & Hagen-Zanker, Alex, 2009. "The dynamics of shifting cultivation captured in an extended Constrained Cellular Automata land use model," Ecological Modelling, Elsevier, vol. 220(18), pages 2302-2309.
    7. Huang, Guixian & He, Weihua & Tan, Yuanyao, 2019. "Theoretical and computational methods to minimize Kirchhoff index of graphs with a given edge k-partiteness," Applied Mathematics and Computation, Elsevier, vol. 341(C), pages 348-357.
    8. Fang Gao & Xiaoxin Li & Kai Zhou & Jia-Bao Liu, 2018. "The Extremal Graphs of Some Topological Indices with Given Vertex k -Partiteness," Mathematics, MDPI, vol. 6(11), pages 1-11, November.
    9. Liu, Jia-Bao & Pan, Xiang-Feng, 2015. "A unified approach to the asymptotic topological indices of various lattices," Applied Mathematics and Computation, Elsevier, vol. 270(C), pages 62-73.
    10. Jia Wei & Jing Wang, 2022. "Spectra of Complemented Triangulation Graphs," Mathematics, MDPI, vol. 10(17), pages 1-9, September.
    11. Li Zhang & Jing Zhao & Jia-Bao Liu & Micheal Arockiaraj, 2018. "Resistance Distance in H -Join of Graphs G 1 , G 2 , … , G k," Mathematics, MDPI, vol. 6(12), pages 1-10, November.
    12. Yang, Yujun & Cao, Yuliang & Yao, Haiyuan & Li, Jing, 2018. "Solution to a conjecture on a Nordhaus–Gaddum type result for the Kirchhoff index," Applied Mathematics and Computation, Elsevier, vol. 332(C), pages 241-249.
    13. Cong Cao & Suzana Dragićević & Songnian Li, 2019. "Short-Term Forecasting of Land Use Change Using Recurrent Neural Network Models," Sustainability, MDPI, vol. 11(19), pages 1-18, September.
    14. Ying Long & Kang Wu, 2017. "Simulating Block-Level Urban Expansion for National Wide Cities," Sustainability, MDPI, vol. 9(6), pages 1-19, May.
    15. Liu, Jia-Bao & Pan, Xiang-Feng, 2016. "Minimizing Kirchhoff index among graphs with a given vertex bipartiteness," Applied Mathematics and Computation, Elsevier, vol. 291(C), pages 84-88.
    16. Lei, Hui & Li, Tao & Ma, Yuede & Wang, Hua, 2018. "Analyzing lattice networks through substructures," Applied Mathematics and Computation, Elsevier, vol. 329(C), pages 297-314.
    17. Jia-Bao Liu & Mobeen Munir & Amina Yousaf & Asim Naseem & Khudaija Ayub, 2019. "Distance and Adjacency Energies of Multi-Level Wheel Networks," Mathematics, MDPI, vol. 7(1), pages 1-9, January.
    18. Das, Kinkar Ch. & Mojallal, Seyed Ahmad, 2016. "Extremal Laplacian energy of threshold graphs," Applied Mathematics and Computation, Elsevier, vol. 273(C), pages 267-280.
    19. Jia-Bao Liu & Muhammad Kashif Shafiq & Haidar Ali & Asim Naseem & Nayab Maryam & Syed Sheraz Asghar, 2019. "Topological Indices of m th Chain Silicate Graphs," Mathematics, MDPI, vol. 7(1), pages 1-16, January.
    20. Fei, Junqi & Tu, Jianhua, 2018. "Complete characterization of bicyclic graphs with the maximum and second-maximum degree Kirchhoff index," Applied Mathematics and Computation, Elsevier, vol. 330(C), pages 118-124.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:168:y:2020:i:c:p:111-121. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.