IDEAS home Printed from https://ideas.repec.org/a/eee/jotrge/v84y2020ics096669231930225x.html
   My bibliography  Save this article

A new zone system to analyze the spatial relationships between the built environment and traffic safety

Author

Listed:
  • Obelheiro, Marta Rodrigues
  • da Silva, Alan Ricardo
  • Nodari, Christine Tessele
  • Cybis, Helena Beatriz Bettella
  • Lindau, Luis Antonio

Abstract

This study aims to investigate the impacts of the built environment on traffic safety at a zonal level using a newly developed crash-related zone system. Traffic analysis zones (TAZs) have been widely employed to analyze traffic safety at a macroscopic level. However, this zone system use may present problems. Unlike previous studies, in which new zoning systems were created from aggregating TAZs, in this study the new zone system, formed by traffic safety analysis zones (TSAZs), is created from the smallest available census units. Geographically Weighted Negative Binomial Regression (GWNBR) models are used and a comparative analysis between non-spatial global crash prediction models and spatial local GWPR (Geographically Weighted Poisson Regression) and GWNBR models using the two zonal systems is presented. We find that TSAZs based models performed better than TAZs based models, especially when combined to the GWNBR technique. Our results show that several features of the built environment are significant crash predictors, and that the relationships among these features and traffic safety vary across space. By combining a crash-related zonal system with spatial GWNBR models to understand the built environment effects on traffic safety, the results of the analysis can help urban planners to consider traffic safety proactively when planning or retrofitting urban areas.

Suggested Citation

  • Obelheiro, Marta Rodrigues & da Silva, Alan Ricardo & Nodari, Christine Tessele & Cybis, Helena Beatriz Bettella & Lindau, Luis Antonio, 2020. "A new zone system to analyze the spatial relationships between the built environment and traffic safety," Journal of Transport Geography, Elsevier, vol. 84(C).
  • Handle: RePEc:eee:jotrge:v:84:y:2020:i:c:s096669231930225x
    DOI: 10.1016/j.jtrangeo.2020.102699
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096669231930225X
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.jtrangeo.2020.102699?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Reid Ewing & Robert Cervero, 2010. "Travel and the Built Environment," Journal of the American Planning Association, Taylor & Francis Journals, vol. 76(3), pages 265-294.
    2. Zhang, Yuanyuan & Bigham, John & Ragland, David & Chen, Xiaohong, 2015. "Investigating the associations between road network structure and non-motorist accidents," Journal of Transport Geography, Elsevier, vol. 42(C), pages 34-47.
    3. Wang, Chao & Quddus, Mohammed & Ison, Stephen, 2009. "The effects of area-wide road speed and curvature on traffic casualties in England," Journal of Transport Geography, Elsevier, vol. 17(5), pages 385-395.
    4. A. Stewart Fotheringham & Taylor M. Oshan, 2016. "Geographically weighted regression and multicollinearity: dispelling the myth," Journal of Geographical Systems, Springer, vol. 18(4), pages 303-329, October.
    5. Lee, Jaeyoung & Abdel-Aty, Mohamed & Jiang, Ximiao, 2014. "Development of zone system for macro-level traffic safety analysis," Journal of Transport Geography, Elsevier, vol. 38(C), pages 13-21.
    6. Huang, Yuan & Wang, Xiaoguang & Patton, David, 2018. "Examining spatial relationships between crashes and the built environment: A geographically weighted regression approach," Journal of Transport Geography, Elsevier, vol. 69(C), pages 221-233.
    7. Abdel-Aty, Mohamed & Lee, Jaeyoung & Siddiqui, Chowdhury & Choi, Keechoo, 2013. "Geographical unit based analysis in the context of transportation safety planning," Transportation Research Part A: Policy and Practice, Elsevier, vol. 49(C), pages 62-75.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chandra, Aitichya & Sharath, M.N. & Pani, Agnivesh & Sahu, Prasanta K., 2021. "A multi-objective genetic algorithm approach to design optimal zoning systems for freight transportation planning," Journal of Transport Geography, Elsevier, vol. 92(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Choi, Dong-ah & Ewing, Reid, 2021. "Effect of street network design on traffic congestion and traffic safety," Journal of Transport Geography, Elsevier, vol. 96(C).
    2. Ghadiri, Mehdi & Rassafi, Amir Abbas & Mirbaha, Babak, 2019. "The effects of traffic zoning with regular geometric shapes on the precision of trip production models," Journal of Transport Geography, Elsevier, vol. 78(C), pages 150-159.
    3. Jingming Liu & Xianhui Hou & Chuyu Xia & Xiang Kang & Yujun Zhou, 2021. "Examining the Spatial Coordination between Metrorail Accessibility and Urban Spatial Form in the Context of Big Data," Land, MDPI, vol. 10(6), pages 1-20, May.
    4. Prato, Carlo G. & Kaplan, Sigal & Patrier, Alexandre & Rasmussen, Thomas K., 2019. "Integrating police reports with geographic information system resources for uncovering patterns of pedestrian crashes in Denmark," Journal of Transport Geography, Elsevier, vol. 74(C), pages 10-23.
    5. Hosseinzadeh, Aryan & Algomaiah, Majeed & Kluger, Robert & Li, Zhixia, 2021. "Spatial analysis of shared e-scooter trips," Journal of Transport Geography, Elsevier, vol. 92(C).
    6. Huang, Helai & Song, Bo & Xu, Pengpeng & Zeng, Qiang & Lee, Jaeyoung & Abdel-Aty, Mohamed, 2016. "Macro and micro models for zonal crash prediction with application in hot zones identification," Journal of Transport Geography, Elsevier, vol. 54(C), pages 248-256.
    7. Ji, Shujuan & Wang, Xin & Lyu, Tao & Liu, Xiaojie & Wang, Yuanqing & Heinen, Eva & Sun, Zhenwei, 2022. "Understanding cycling distance according to the prediction of the XGBoost and the interpretation of SHAP: A non-linear and interaction effect analysis," Journal of Transport Geography, Elsevier, vol. 103(C).
    8. Shichen Huang & Chunfu Shao & Juan Li & Xiong Yang & Xiaoyu Zhang & Jianpei Qian & Shengyou Wang, 2020. "Feature Extraction and Representation of Urban Road Networks Based on Travel Routes," Sustainability, MDPI, vol. 12(22), pages 1-17, November.
    9. Wang, Shiguang & Yu, Dexin & Kwan, Mei-Po & Zheng, Lili & Miao, Hongzhi & Li, Yongxing, 2020. "The impacts of road network density on motor vehicle travel: An empirical study of Chinese cities based on network theory," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 144-156.
    10. Alfonso Montella & Vittorio Marzano & Filomena Mauriello & Roberta Vitillo & Roberto Fasanelli & Mariano Pernetti & Francesco Galante, 2019. "Development of Macro-Level Safety Performance Functions in the City of Naples," Sustainability, MDPI, vol. 11(7), pages 1-21, March.
    11. Wu, Peijie & Chen, Tianyi & Diew Wong, Yiik & Meng, Xianghai & Wang, Xueqin & Liu, Wei, 2023. "Exploring key spatio-temporal features of crash risk hot spots on urban road network: A machine learning approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 173(C).
    12. Yuan, Quan & Wang, Jueyu, 2021. "Goods movement, road safety, and spatial inequity: Evaluating freight-related crashes in low-income or minority neighborhoods," Journal of Transport Geography, Elsevier, vol. 96(C).
    13. Mehzabin Tuli, Farzana & Mitra, Suman & Crews, Mariah B., 2021. "Factors influencing the usage of shared E-scooters in Chicago," Transportation Research Part A: Policy and Practice, Elsevier, vol. 154(C), pages 164-185.
    14. Pulugurtha, Srinivas S. & Mathew, Sonu, 2021. "Modeling AADT on local functionally classified roads using land use, road density, and nearest nonlocal road data," Journal of Transport Geography, Elsevier, vol. 93(C).
    15. Eleftheria Kontou & Noreen McDonald, 2021. "Associating ridesourcing with road safety outcomes: Insights from Austin, Texas," PLOS ONE, Public Library of Science, vol. 16(3), pages 1-18, March.
    16. John Stanley & Janet Stanley, 2023. "Improving Appraisal Methodology for Land Use Transport Measures to Reduce Risk of Social Exclusion," Sustainability, MDPI, vol. 15(15), pages 1-18, August.
    17. Marie Geraldine Herrmann-Lunecke & Cristhian Figueroa-Martínez & Francisca Parra Huerta & Rodrigo Mora, 2022. "The Disabling City: Older Persons Walking in Central Neighbourhoods of Santiago de Chile," Sustainability, MDPI, vol. 14(17), pages 1-19, September.
    18. Li, Jingjing & Kim, Changjoo & Sang, Sunhee, 2018. "Exploring impacts of land use characteristics in residential neighborhood and activity space on non-work travel behaviors," Journal of Transport Geography, Elsevier, vol. 70(C), pages 141-147.
    19. Ding, Chuan & Wang, Donggen & Liu, Chao & Zhang, Yi & Yang, Jiawen, 2017. "Exploring the influence of built environment on travel mode choice considering the mediating effects of car ownership and travel distance," Transportation Research Part A: Policy and Practice, Elsevier, vol. 100(C), pages 65-80.
    20. Van Acker, Veronique & Ho, Loan & Stevens, Larissa & Mulley, Corinne, 2020. "Quantifying the effects of childhood and previous residential experiences on the use of public transport," Journal of Transport Geography, Elsevier, vol. 86(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jotrge:v:84:y:2020:i:c:s096669231930225x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/journal-of-transport-geography .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.