Crafting clarity: Leveraging large language models to decode consumer reviews
Author
Abstract
Suggested Citation
DOI: 10.1016/j.jretconser.2024.103975
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Mike Thelwall & Kevan Buckley & Georgios Paltoglou & Di Cai & Arvid Kappas, 2010. "Sentiment strength detection in short informal text," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 61(12), pages 2544-2558, December.
- Margaret Roberts & Brandon Stewart & Tingley, Dustin & Edoardo Airoldi, 2013. "The structural topic model and applied social science," Working Paper 132666, Harvard University OpenScholar.
- Bharati Sanjay Ainapure & Reshma Nitin Pise & Prathiba Reddy & Bhargav Appasani & Avireni Srinivasulu & Mohammad S. Khan & Nicu Bizon, 2023. "Sentiment Analysis of COVID-19 Tweets Using Deep Learning and Lexicon-Based Approaches," Sustainability, MDPI, vol. 15(3), pages 1-21, January.
- Wu, Jia-Jhou & Chang, Sue-Ting, 2020. "Exploring customer sentiment regarding online retail services: A topic-based approach," Journal of Retailing and Consumer Services, Elsevier, vol. 55(C).
- Kumar, Avinash & Chakraborty, Shibashish & Bala, Pradip Kumar, 2023. "Text mining approach to explore determinants of grocery mobile app satisfaction using online customer reviews," Journal of Retailing and Consumer Services, Elsevier, vol. 73(C).
- Filieri, Raffaele, 2015. "What makes online reviews helpful? A diagnosticity-adoption framework to explain informational and normative influences in e-WOM," Journal of Business Research, Elsevier, vol. 68(6), pages 1261-1270.
- Sánchez-Franco, Manuel J. & Arenas-Márquez, Francisco J. & Alonso-Dos-Santos, Manuel, 2021. "Using structural topic modelling to predict users’ sentiment towards intelligent personal agents. An application for Amazon’s echo and Google Home," Journal of Retailing and Consumer Services, Elsevier, vol. 63(C).
- Yue Kang & Zhao Cai & Chee-Wee Tan & Qian Huang & Hefu Liu, 2020. "Natural language processing (NLP) in management research: A literature review," Journal of Management Analytics, Taylor & Francis Journals, vol. 7(2), pages 139-172, April.
- Mike Thelwall & Kevan Buckley & Georgios Paltoglou & Di Cai & Arvid Kappas, 2010. "Sentiment strength detection in short informal text," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 61(12), pages 2544-2558, December.
- Basu, Bibaswan & Sebastian, M.P. & Kar, Arpan Kumar, 2024. "What affects the promoting intention of mobile banking services? Insights from mining consumer reviews," Journal of Retailing and Consumer Services, Elsevier, vol. 77(C).
- Luong, Van Ha & Tarquini, Annalisa & Anadol, Yaprak & Klaus, Phil & Manthiou, Aikaterini, 2024. "Is digital fashion the future of the metaverse? Insights from YouTube comments," Journal of Retailing and Consumer Services, Elsevier, vol. 79(C).
- Sparks, Beverley A. & Browning, Victoria, 2011. "The impact of online reviews on hotel booking intentions and perception of trust," Tourism Management, Elsevier, vol. 32(6), pages 1310-1323.
- Kim, Da Yeon & Kim, Sang Yong, 2023. "Investigating the effect of customer-generated content on performance in online platform-based experience goods market," Journal of Retailing and Consumer Services, Elsevier, vol. 74(C).
- Stanca, Liana & Dabija, Dan-Cristian & Câmpian, Veronica, 2023. "Qualitative analysis of customer behavior in the retail industry during the COVID-19 pandemic: A word-cloud and sentiment analysis approach," Journal of Retailing and Consumer Services, Elsevier, vol. 75(C).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Mustak, Mekhail & Hallikainen, Heli & Laukkanen, Tommi & Plé, Loïc & Hollebeek, Linda D. & Aleem, Majid, 2024. "Using machine learning to develop customer insights from user-generated content," Journal of Retailing and Consumer Services, Elsevier, vol. 81(C).
- Michal Maj & Damian Pliszczuk & Patryk Marek & Weronika Wilczewska & Bartosz Przysucha & Tomasz Rymarczyk, 2024. "Optimizing Customer Support Using Text2SQL to Query Natural Language Databases," European Research Studies Journal, European Research Studies Journal, vol. 0(Special B), pages 426-438.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Kumari, Vandana & Bala, Pradip Kumar & Chakraborty, Shibashish, 2024. "A text mining approach to explore factors influencing consumer intention to use metaverse platform services: Insights from online customer reviews," Journal of Retailing and Consumer Services, Elsevier, vol. 81(C).
- Desiraju, Kanti & Mishra, Arindra Nath & Sengupta, Pooja, 2024. "Customer perceptions on open banking apps: Insights using Structural topic modeling," Journal of Retailing and Consumer Services, Elsevier, vol. 81(C).
- Bellary, Sreevatsa & Bala, Pradip Kumar & Chakraborty, Shibashish, 2024. "Exploring cognitive-behavioral drivers impacting consumer continuance intention of fitness apps using a hybrid approach of text mining, SEM, and ANN," Journal of Retailing and Consumer Services, Elsevier, vol. 81(C).
- Kumar, Anand & Bala, Pradip Kumar & Chakraborty, Shibashish & Behera, Rajat Kumar, 2024. "Exploring antecedents impacting user satisfaction with voice assistant app: A text mining-based analysis on Alexa services," Journal of Retailing and Consumer Services, Elsevier, vol. 76(C).
- Ma, Jie & Tse, Ying Kei & Wang, Xiaojun & Zhang, Minhao, 2019. "Examining customer perception and behaviour through social media research – An empirical study of the United Airlines overbooking crisis," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 127(C), pages 192-205.
- Kübler, Raoul V. & Manke, Kai & Pauwels, Koen, 2025. "I like, I share, I vote: Mapping the dynamic system of political marketing," Journal of Business Research, Elsevier, vol. 186(C).
- Moradi, Masoud & Dass, Mayukh & Kumar, Piyush, 2023. "Differential effects of analytical versus emotional rhetorical style on review helpfulness," Journal of Business Research, Elsevier, vol. 154(C).
- Müller-Hansen, Finn & Lee, Yuan Ting & Callaghan, Max & Jankin, Slava & Minx, Jan C., 2022. "The German coal debate on Twitter: Reactions to a corporate policy process," Energy Policy, Elsevier, vol. 169(C).
- Elvira Ismagilova & Emma L. Slade & Nripendra P. Rana & Yogesh K. Dwivedi, 2020. "The Effect of Electronic Word of Mouth Communications on Intention to Buy: A Meta-Analysis," Information Systems Frontiers, Springer, vol. 22(5), pages 1203-1226, October.
- Daesik Kim & Chung Joo Chung & Kihong Eom, 2022. "Measuring Online Public Opinion for Decision Making: Application of Deep Learning on Political Context," Sustainability, MDPI, vol. 14(7), pages 1-16, March.
- Gabriele Ranco & Ilaria Bordino & Giacomo Bormetti & Guido Caldarelli & Fabrizio Lillo & Michele Treccani, 2014. "Coupling news sentiment with web browsing data improves prediction of intra-day price dynamics," Papers 1412.3948, arXiv.org, revised Dec 2015.
- Tadić, Bosiljka & Mitrović Dankulov, Marija & Melnik, Roderick, 2023. "Evolving cycles and self-organised criticality in social dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
- Ping-Yu Hsu & Hong-Tsuen Lei & Shih-Hsiang Huang & Teng Hao Liao & Yao-Chung Lo & Chin-Chun Lo, 2019. "Effects of sentiment on recommendations in social network," Electronic Markets, Springer;IIM University of St. Gallen, vol. 29(2), pages 253-262, June.
- Cohen, Scott & Stienmetz, Jason & Hanna, Paul & Humbracht, Michael & Hopkins, Debbie, 2020. "Shadowcasting tourism knowledge through media: Self-driving sex cars?," Annals of Tourism Research, Elsevier, vol. 85(C).
- Zhang, Xuetong & Zhang, Weiguo, 2023. "Information asymmetry, sentiment interactions, and asset price," The North American Journal of Economics and Finance, Elsevier, vol. 67(C).
- Loureiro, Sandra M.C. & Cavallero, Luisa & Miranda, Francisco Javier, 2018. "Fashion brands on retail websites: Customer performance expectancy and e-word-of-mouth," Journal of Retailing and Consumer Services, Elsevier, vol. 41(C), pages 131-141.
- Indy Wijngaards & Martijn Burger & Job van Exel, 2019. "The promise of open survey questions—The validation of text-based job satisfaction measures," PLOS ONE, Public Library of Science, vol. 14(12), pages 1-22, December.
- Junegak Joung & Ki-Hun Kim & Kwangsoo Kim, 2021. "Data-Driven Approach to Dual Service Failure Monitoring From Negative Online Reviews: Managerial Perspective," SAGE Open, , vol. 11(1), pages 21582440209, January.
- Ema Kušen & Mark Strembeck, 2021. "“Evacuate everyone south of that line” Analyzing structural communication patterns during natural disasters," Journal of Computational Social Science, Springer, vol. 4(2), pages 531-565, November.
- Kumar, Avinash & Chakraborty, Shibashish & Bala, Pradip Kumar, 2023. "Text mining approach to explore determinants of grocery mobile app satisfaction using online customer reviews," Journal of Retailing and Consumer Services, Elsevier, vol. 73(C).
More about this item
Keywords
Natural language processing; Large language models; Fine-tuning; Transfer learning; Deep learning;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:joreco:v:81:y:2024:i:c:s0969698924002716. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/journal-of-retailing-and-consumer-services .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.