IDEAS home Printed from
   My bibliography  Save this article

Optimal mixed-model sequencing for balanced assembly lines


  • Dar-El, EM
  • Cucuy, S


This paper describes an algorithm for solving optimally, the mixed-model sequencing problem when assembly line stations are balanced for each model. An optimal sequence is obtained with the minimization of the overall assembly line length for zero station idle time. The algorithm incorporates two basic steps. The first involves a search procedure that generates all cycle sequences; i.e. sequences having identical 'start' and 'finish' positions and whose work content can be executed within a defined station length. The second step uses integer programming (IP) to determine the number and combination of the various cycle sequences, such that the production demand is satisfied.

Suggested Citation

  • Dar-El, EM & Cucuy, S, 1977. "Optimal mixed-model sequencing for balanced assembly lines," Omega, Elsevier, vol. 5(3), pages 333-342.
  • Handle: RePEc:eee:jomega:v:5:y:1977:i:3:p:333-342

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. van Zante-de Fokkert, Jannet I. & de Kok, Ton G., 1997. "The mixed and multi model line balancing problem: a comparison," European Journal of Operational Research, Elsevier, vol. 100(3), pages 399-412, August.
    2. Lovgren, Robin H. & Racer, Michael J., 2000. "Algorithms for mixed-model sequencing with due date restrictions," European Journal of Operational Research, Elsevier, vol. 120(2), pages 408-422, January.

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:5:y:1977:i:3:p:333-342. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.