IDEAS home Printed from
   My bibliography  Save this article

Creating student groups with similar characteristics: A heuristic approach


  • Mingers, J.
  • O'Brien, F. A.


This paper describes an algorithm for classifying elements with binary valued attributes so that the classes are similar. The problem chosen for discussing is that of allocating students to groups within an educational setting. Individual students are described by a set of binary-valued attributes. The objective of the algorithm is to create working groups which are similar to each other in terms of their mix of student attributes. The algorithm uses an information theory measure. The paper also compares the performance of the algorithm to a goal programming formulation of the problem.

Suggested Citation

  • Mingers, J. & O'Brien, F. A., 1995. "Creating student groups with similar characteristics: A heuristic approach," Omega, Elsevier, vol. 23(3), pages 313-321, June.
  • Handle: RePEc:eee:jomega:v:23:y:1995:i:3:p:313-321

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Saber, Hussein M. & Ghosh, Jay B., 2001. "Assigning students to academic majors," Omega, Elsevier, vol. 29(6), pages 513-523, December.
    2. O'Brien, F. A. & Mingers, J., 1997. "A heuristic algorithm for the equitable partitioning problem," Omega, Elsevier, vol. 25(2), pages 215-223, April.
    3. Sergio García & Valentina Cacchiani & Lieselot Vanhaverbeke & Martin Bischoff, 2014. "The table placement problem: a research challenge at the EWI 2007," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(1), pages 208-226, April.
    4. Mustafa, A. & Goh, M., 1996. "Multi-criterion models for higher education administration," Omega, Elsevier, vol. 24(2), pages 167-178, April.
    5. Akkan, Can & Erdem Külünk, M. & Koçaş, Cenk, 2016. "Finding robust timetables for project presentations of student teams," European Journal of Operational Research, Elsevier, vol. 249(2), pages 560-576.
    6. Weitz, R. R. & Lakshminarayanan, S., 1997. "An empirical comparison of heuristic and graph theoretic methods for creating maximally diverse groups, VLSI design, and exam scheduling," Omega, Elsevier, vol. 25(4), pages 473-482, August.
    7. Bhadury, Joyendu & Mighty, E. Joy & Damar, Hario, 2000. "Maximizing workforce diversity in project teams: a network flow approach," Omega, Elsevier, vol. 28(2), pages 143-153, April.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:23:y:1995:i:3:p:313-321. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.