IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v99y2008i9p1888-1905.html
   My bibliography  Save this article

Bayesian shrinkage prediction for the regression problem

Author

Listed:
  • Kobayashi, Kei
  • Komaki, Fumiyasu

Abstract

We consider Bayesian shrinkage predictions for the Normal regression problem under the frequentist Kullback-Leibler risk function. Firstly, we consider the multivariate Normal model with an unknown mean and a known covariance. While the unknown mean is fixed, the covariance of future samples can be different from that of training samples. We show that the Bayesian predictive distribution based on the uniform prior is dominated by that based on a class of priors if the prior distributions for the covariance and future covariance matrices are rotation invariant. Then, we consider a class of priors for the mean parameters depending on the future covariance matrix. With such a prior, we can construct a Bayesian predictive distribution dominating that based on the uniform prior. Lastly, applying this result to the prediction of response variables in the Normal linear regression model, we show that there exists a Bayesian predictive distribution dominating that based on the uniform prior. Minimaxity of these Bayesian predictions follows from these results.

Suggested Citation

  • Kobayashi, Kei & Komaki, Fumiyasu, 2008. "Bayesian shrinkage prediction for the regression problem," Journal of Multivariate Analysis, Elsevier, vol. 99(9), pages 1888-1905, October.
  • Handle: RePEc:eee:jmvana:v:99:y:2008:i:9:p:1888-1905
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(08)00036-5
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. George, Edward I. & Xu, Xinyi, 2008. "Predictive Density Estimation For Multiple Regression," Econometric Theory, Cambridge University Press, vol. 24(02), pages 528-544, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Komaki, Fumiyasu, 2015. "Simultaneous prediction for independent Poisson processes with different durations," Journal of Multivariate Analysis, Elsevier, vol. 141(C), pages 35-48.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:99:y:2008:i:9:p:1888-1905. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.