IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

Grouped Dirichlet distribution: A new tool for incomplete categorical data analysis

Listed author(s):
  • Ng, Kai Wang
  • Tang, Man-Lai
  • Tan, Ming
  • Tian, Guo-Liang
Registered author(s):

    Motivated by the likelihood functions of several incomplete categorical data, this article introduces a new family of distributions, grouped Dirichlet distributions (GDD), which includes the classical Dirichlet distribution (DD) as a special case. First, we develop distribution theory for the GDD in its own right. Second, we use this expanded family as a new tool for statistical analysis of incomplete categorical data. Starting with a GDD with two partitions, we derive its stochastic representation that provides a simple procedure for simulation. Other properties such as mixed moments, mode, marginal and conditional distributions are also derived. The general GDD with more than two partitions is considered in a parallel manner. Three data sets from a case-control study, a leprosy survey, and a neurological study are used to illustrate how the GDD can be used as a new tool for analyzing incomplete categorical data. Our approach based on GDD has at least two advantages over the commonly used approach based on the DD in both frequentist and conjugate Bayesian inference: (a) in some cases, both the maximum likelihood and Bayes estimates have closed-form expressions in the new approach, but not so when they are based on the commonly-used approach; and (b) even if a closed-form solution is not available, the EM and data augmentation algorithms in the new approach converge much faster than in the commonly-used approach.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal Journal of Multivariate Analysis.

    Volume (Year): 99 (2008)
    Issue (Month): 3 (March)
    Pages: 490-509

    in new window

    Handle: RePEc:eee:jmvana:v:99:y:2008:i:3:p:490-509
    Contact details of provider: Web page:

    Order Information: Postal:

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    in new window

    1. Liu, Chuanhai, 1999. "Efficient ML Estimation of the Multivariate Normal Distribution from Incomplete Data," Journal of Multivariate Analysis, Elsevier, vol. 69(2), pages 206-217, May.
    2. Zhi Geng, 2000. "Mixed Graphical Models with Missing Data and the Partial Imputation EM Algorithm," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 27(3), pages 433-444.
    3. Geng, Zhi & Li, Kaican, 2003. "Factorization of posteriors and partial imputation algorithm for graphical models with missing data," Statistics & Probability Letters, Elsevier, vol. 64(4), pages 369-379, October.
    4. Gupta, Rameshwar D. & Richards, Donald St.P., 1987. "Multivariate Liouville distributions," Journal of Multivariate Analysis, Elsevier, vol. 23(2), pages 233-256, December.
    5. Gupta, Rameshwar D. & Richards, Donald St. P., 1992. "Multivariate Liouville distributions, III," Journal of Multivariate Analysis, Elsevier, vol. 43(1), pages 29-57, October.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:99:y:2008:i:3:p:490-509. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.