IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this article

Characterizations of Arnold and Strauss' and related bivariate exponential models

Listed author(s):
  • Kotz, Samuel
  • Navarro, Jorge
  • Ruiz, Jose M.
Registered author(s):

    Characterizations of probability distributions is a topic of great popularity in applied probability and reliability literature for over last 30 years. Beside the intrinsic mathematical interest (often related to functional equations) the results in this area are helpful for probabilistic and statistical modelling, especially in engineering and biostatistical problems. A substantial number of characterizations has been devoted to a legion of variants of exponential distributions. The main reliability measures associated with a random vector X are the conditional moment function defined by m[phi](x)=E([phi](X)X[greater-or-equal, slanted]x) (which is equivalent to the mean residual life function e(x)=m[phi](x)-x when [phi](x)=x) and the hazard gradient function h(x)=-[backward difference]logR(x), where R(x) is the reliability (survival) function, R(x)=Pr(X[greater-or-equal, slanted]x), and [backward difference] is the operator . In this paper we study the consequences of a linear relationship between the hazard gradient and the conditional moment functions for continuous bivariate and multivariate distributions. We obtain a general characterization result which is the applied to characterize Arnold and Strauss' bivariate exponential distribution and some related models.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(06)00143-6
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal Journal of Multivariate Analysis.

    Volume (Year): 98 (2007)
    Issue (Month): 7 (August)
    Pages: 1494-1507

    as
    in new window

    Handle: RePEc:eee:jmvana:v:98:y:2007:i:7:p:1494-1507
    Contact details of provider: Web page: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description

    Order Information: Postal: http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
    Web: https://shop.elsevier.com/order?id=622892&ref=622892_01_ooc_1&version=01

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as
    in new window


    1. Marshall, Albert W., 1975. "Some comments on the hazard gradient," Stochastic Processes and their Applications, Elsevier, vol. 3(3), pages 293-300, July.
    2. Johnson, N. L. & Kotz, Samuel, 1975. "A vector multivariate hazard rate," Journal of Multivariate Analysis, Elsevier, vol. 5(1), pages 53-66, March.
    3. Shanbhag, D. N. & Kotz, S., 1987. "Some new approaches to multivariate probability distributions," Journal of Multivariate Analysis, Elsevier, vol. 22(2), pages 189-211, August.
    4. Jorge Navarro & Jose Ruiz, 2004. "A characterization of the multivariate normal distribution by using the hazard gradient," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 56(2), pages 361-367, June.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:98:y:2007:i:7:p:1494-1507. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.