IDEAS home Printed from
   My bibliography  Save this article

Multivariate Extensions of Univariate Life Distributions


  • Roy, Dilip
  • Mukherjee, S. P.


A general approach for the development of multivariate survival models, based on a set of given marginal survivals, is presented. Preservation of IFR and IFRA properties and the nature of dependence among the variables are examined, and a recursive relation is suggested to obtain the resultant density function. In particular, an absolutely continuous Weibull distribution is derived and a few of its properties are studied.

Suggested Citation

  • Roy, Dilip & Mukherjee, S. P., 1998. "Multivariate Extensions of Univariate Life Distributions," Journal of Multivariate Analysis, Elsevier, vol. 67(1), pages 72-79, October.
  • Handle: RePEc:eee:jmvana:v:67:y:1998:i:1:p:72-79

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Elandt-Johnson, Regina C., 1978. "Some properties of bivariate Gumbel Type A distributions with proportional hazard rates," Journal of Multivariate Analysis, Elsevier, vol. 8(2), pages 244-254, June.
    2. Lee, Larry, 1979. "Multivariate distributions having Weibull properties," Journal of Multivariate Analysis, Elsevier, vol. 9(2), pages 267-277, June.
    3. Johnson, N. L. & Kotz, Samuel, 1975. "A vector multivariate hazard rate," Journal of Multivariate Analysis, Elsevier, vol. 5(1), pages 53-66, March.
    4. Shanbhag, D. N. & Kotz, S., 1987. "Some new approaches to multivariate probability distributions," Journal of Multivariate Analysis, Elsevier, vol. 22(2), pages 189-211, August.
    5. Shaked, Moshe, 1982. "A general theory of some positive dependence notions," Journal of Multivariate Analysis, Elsevier, vol. 12(2), pages 199-218, June.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. repec:eee:reensy:v:92:y:2007:i:2:p:135-143 is not listed on IDEAS


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:67:y:1998:i:1:p:72-79. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.