IDEAS home Printed from
   My bibliography  Save this article

Conditional limiting distribution of Type III elliptical random vectors


  • Hashorva, Enkelejd


In this paper we consider elliptical random vectors in with stochastic representation RAU where R is a positive random radius independent of the random vector U which is uniformly distributed on the unit sphere of and is a non-singular matrix. When R has distribution function in the Weibull max-domain of attraction we say that the corresponding elliptical random vector is of Type III. For the bivariate set-up, Berman [Sojurns and Extremes of Stochastic Processes, Wadsworth & Brooks/ Cole, 1992] obtained for Type III elliptical random vectors an interesting asymptotic approximation by conditioning on one component. In this paper we extend Berman's result to Type III elliptical random vectors in . Further, we derive an asymptotic approximation for the conditional distribution of such random vectors.

Suggested Citation

  • Hashorva, Enkelejd, 2007. "Conditional limiting distribution of Type III elliptical random vectors," Journal of Multivariate Analysis, Elsevier, vol. 98(2), pages 282-294, February.
  • Handle: RePEc:eee:jmvana:v:98:y:2007:i:2:p:282-294

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Cambanis, Stamatis & Huang, Steel & Simons, Gordon, 1981. "On the theory of elliptically contoured distributions," Journal of Multivariate Analysis, Elsevier, vol. 11(3), pages 368-385, September.
    2. Kano, Y., 1994. "Consistency Property of Elliptic Probability Density Functions," Journal of Multivariate Analysis, Elsevier, vol. 51(1), pages 139-147, October.
    3. Hüsler, Jürg & Reiss, Rolf-Dieter, 1989. "Maxima of normal random vectors: Between independence and complete dependence," Statistics & Probability Letters, Elsevier, vol. 7(4), pages 283-286, February.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Hashorva, Enkelejd, 2010. "Asymptotics of the norm of elliptical random vectors," Journal of Multivariate Analysis, Elsevier, vol. 101(4), pages 926-935, April.
    2. Hashorva, Enkelejd, 2008. "Conditional limiting distribution of beta-independent random vectors," Journal of Multivariate Analysis, Elsevier, vol. 99(7), pages 1438-1459, August.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:98:y:2007:i:2:p:282-294. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.