IDEAS home Printed from
   My bibliography  Save this article

Convergence Rates for Logspline Tomography


  • Koo, Ja-Yong


We consider bivariate logspline density estimation for tomography data. In the usual logspline density estimation for bivariate data, the logarithm of the unknown density function is estimated by tensor product splines, the unknown parameters of which are given by maximum likelihood. In this paper we use tensor product B-splines and the projection-slice theorem to construct the logspline density estimators for tomography data. Rates of convergence are established for log-density functions assumed to belong to a Besov space.

Suggested Citation

  • Koo, Ja-Yong, 1998. "Convergence Rates for Logspline Tomography," Journal of Multivariate Analysis, Elsevier, vol. 67(2), pages 367-384, November.
  • Handle: RePEc:eee:jmvana:v:67:y:1998:i:2:p:367-384

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Koo, Ja-Yong, 1996. "Bivariate B-splines for tensor logspline density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 21(1), pages 31-42, January.
    2. Koo, Ja-Yong & Kim, Woo-Chul, 1996. "Wavelet density estimation by approximation of log-densities," Statistics & Probability Letters, Elsevier, vol. 26(3), pages 271-278, February.
    3. Kooperberg, Charles & Stone, Charles J., 1991. "A study of logspline density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 12(3), pages 327-347, November.
    Full references (including those not matched with items on IDEAS)


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:67:y:1998:i:2:p:367-384. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.