IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v62y1997i1p36-63.html
   My bibliography  Save this article

Goodness-of-Fit Tests for a Multivariate Distribution by the Empirical Characteristic Function

Author

Listed:
  • Fan, Yanqin

Abstract

In this paper, we take the characteristic function approach to goodness-of-fit tests. It has several advantages over existing methods: First, unlike the popular comparison density function approach suggested in Parzen (1979), our approach is applicable to both univariate and multivariate data; Second, in the case where the null hypothesis is composite, the approach taken in this paper yields a test that is superior to tests based on empirical distribution functions such as the Cramér- von Mises test, because on the one hand the asymptotic critical values of our test are easily obtained from the standard normal distribution and are not affected by-consistent estimation of the unknown parameters in the null hypothesis, and on the other hand, our test extends that in Eubank and LaRiccia (1992) and hence is more powerful than the Cramér-von Mises test for high-frequency alternatives.

Suggested Citation

  • Fan, Yanqin, 1997. "Goodness-of-Fit Tests for a Multivariate Distribution by the Empirical Characteristic Function," Journal of Multivariate Analysis, Elsevier, vol. 62(1), pages 36-63, July.
  • Handle: RePEc:eee:jmvana:v:62:y:1997:i:1:p:36-63
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(97)91672-9
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. L. Baringhaus & N. Henze, 1988. "A consistent test for multivariate normality based on the empirical characteristic function," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 35(1), pages 339-348, December.
    2. Hall, Peter, 1984. "Central limit theorem for integrated square error of multivariate nonparametric density estimators," Journal of Multivariate Analysis, Elsevier, vol. 14(1), pages 1-16, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Bin & Hong, Yongmiao, 2011. "Generalized spectral testing for multivariate continuous-time models," Journal of Econometrics, Elsevier, vol. 164(2), pages 268-293, October.
    2. Henze, N. & Klar, B. & Zhu, L. X., 2005. "Checking the adequacy of the multivariate semiparametric location shift model," Journal of Multivariate Analysis, Elsevier, vol. 93(2), pages 238-256, April.
    3. Scaillet, Olivier, 2007. "Kernel-based goodness-of-fit tests for copulas with fixed smoothing parameters," Journal of Multivariate Analysis, Elsevier, vol. 98(3), pages 533-543, March.
    4. Qi Li & Jeffrey Scott Racine, 2006. "Nonparametric Econometrics: Theory and Practice," Economics Books, Princeton University Press, edition 1, number 8355.
    5. Li, Tong, 2002. "Robust and consistent estimation of nonlinear errors-in-variables models," Journal of Econometrics, Elsevier, vol. 110(1), pages 1-26, September.
    6. Jiménez-Gamero, M.D. & Alba-Fernández, V. & Muñoz-García, J. & Chalco-Cano, Y., 2009. "Goodness-of-fit tests based on empirical characteristic functions," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 3957-3971, October.
    7. repec:eee:phsmap:v:486:y:2017:i:c:p:628-637 is not listed on IDEAS
    8. Lin, Liang-Ching & Lee, Sangyeol & Guo, Meihui, 2013. "Goodness-of-fit test for stochastic volatility models," Journal of Multivariate Analysis, Elsevier, vol. 116(C), pages 473-498.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:62:y:1997:i:1:p:36-63. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.