IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v208y2025ics0047259x25000387.html
   My bibliography  Save this article

Asymptotics of estimators for structured covariance matrices

Author

Listed:
  • Lopuhaä, Hendrik Paul

Abstract

We show that the limiting variance of a sequence of estimators for a structured covariance matrix has a general form, that for linear covariance structures appears as the variance of a scaled projection of a random matrix that is of radial type, and a similar result is obtained for the corresponding sequence of estimators for the vector of variance components. These results are illustrated by the limiting behavior of estimators for a differentiable covariance structure in a variety of multivariate statistical models. We also derive a characterization for the influence function of corresponding functionals. Furthermore, we derive the limiting distribution and influence function of scale invariant mappings of such estimators and their corresponding functionals. As a consequence, the asymptotic relative efficiency of different estimators for the shape component of a structured covariance matrix can be compared by means of a single scalar and the gross error sensitivity of the corresponding influence functions can be compared by means of a single index. Similar results are obtained for estimators of the normalized vector of variance components. We apply our results to investigate how the efficiency, gross error sensitivity, and breakdown point of S-estimators for the normalized variance components are affected simultaneously by varying their cutoff value.

Suggested Citation

  • Lopuhaä, Hendrik Paul, 2025. "Asymptotics of estimators for structured covariance matrices," Journal of Multivariate Analysis, Elsevier, vol. 208(C).
  • Handle: RePEc:eee:jmvana:v:208:y:2025:i:c:s0047259x25000387
    DOI: 10.1016/j.jmva.2025.105443
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X25000387
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2025.105443?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:208:y:2025:i:c:s0047259x25000387. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.