IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v208y2025ics0047259x25000387.html
   My bibliography  Save this article

Asymptotics of estimators for structured covariance matrices

Author

Listed:
  • Lopuhaä, Hendrik Paul

Abstract

We show that the limiting variance of a sequence of estimators for a structured covariance matrix has a general form, that for linear covariance structures appears as the variance of a scaled projection of a random matrix that is of radial type, and a similar result is obtained for the corresponding sequence of estimators for the vector of variance components. These results are illustrated by the limiting behavior of estimators for a differentiable covariance structure in a variety of multivariate statistical models. We also derive a characterization for the influence function of corresponding functionals. Furthermore, we derive the limiting distribution and influence function of scale invariant mappings of such estimators and their corresponding functionals. As a consequence, the asymptotic relative efficiency of different estimators for the shape component of a structured covariance matrix can be compared by means of a single scalar and the gross error sensitivity of the corresponding influence functions can be compared by means of a single index. Similar results are obtained for estimators of the normalized vector of variance components. We apply our results to investigate how the efficiency, gross error sensitivity, and breakdown point of S-estimators for the normalized variance components are affected simultaneously by varying their cutoff value.

Suggested Citation

  • Lopuhaä, Hendrik Paul, 2025. "Asymptotics of estimators for structured covariance matrices," Journal of Multivariate Analysis, Elsevier, vol. 208(C).
  • Handle: RePEc:eee:jmvana:v:208:y:2025:i:c:s0047259x25000387
    DOI: 10.1016/j.jmva.2025.105443
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X25000387
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2025.105443?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Salibian-Barrera, Matias & Van Aelst, Stefan & Willems, Gert, 2006. "Principal Components Analysis Based on Multivariate MM Estimators With Fast and Robust Bootstrap," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1198-1211, September.
    2. Kudraszow, Nadia L. & Maronna, Ricardo A., 2011. "Estimates of MM type for the multivariate linear model," Journal of Multivariate Analysis, Elsevier, vol. 102(9), pages 1280-1292, October.
    3. Samuel Copt & Stephane Heritier, 2007. "Robust Alternatives to the F-Test in Mixed Linear Models Based on MM-Estimates," Biometrics, The International Biometric Society, vol. 63(4), pages 1045-1052, December.
    4. Van Aelst, Stefan & Willems, Gert, 2011. "Robust and Efficient One-Way MANOVA Tests," Journal of the American Statistical Association, American Statistical Association, vol. 106(494), pages 706-718.
    5. Copt, Samuel & Victoria-Feser, Maria-Pia, 2006. "High-Breakdown Inference for Mixed Linear Models," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 292-300, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peremans, Kris & Van Aelst, Stefan, 2018. "Robust inference for seemingly unrelated regression models," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 212-224.
    2. Marco Riani & Andrea Cerioli & Francesca Torti, 2014. "On consistency factors and efficiency of robust S-estimators," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(2), pages 356-387, June.
    3. Ruiz-Gazen, Anne & Lopuhaä, Henrik Paul & Gares, Valérie, 2022. "S-estimation in Linear Models with Structured Covariance Matrices," TSE Working Papers 22-1343, Toulouse School of Economics (TSE).
    4. Stephane Heritier & Maria-Pia Victoria-Feser, 2018. "Discussion of “The power of monitoring: how to make the most of a contaminated multivariate sample” by Andrea Cerioli, Marco Riani, Anthony C. Atkinson and Aldo Corbellini," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 27(4), pages 595-602, December.
    5. Salibian-Barrera, Matias & Van Aelst, Stefan & Yohai, Víctor J., 2016. "Robust tests for linear regression models based on τ-estimates," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 436-455.
    6. Friedrich, Sarah & Pauly, Markus, 2018. "MATS: Inference for potentially singular and heteroscedastic MANOVA," Journal of Multivariate Analysis, Elsevier, vol. 165(C), pages 166-179.
    7. Xu, Li-Wen, 2015. "Parametric bootstrap approaches for two-way MANOVA with unequal cell sizes and unequal cell covariance matrices," Journal of Multivariate Analysis, Elsevier, vol. 133(C), pages 291-303.
    8. Koller, Manuel, 2016. "robustlmm: An R Package for Robust Estimation of Linear Mixed-Effects Models," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 75(i06).
    9. M. Hubert & P. Rousseeuw & K. Vakili, 2014. "Shape bias of robust covariance estimators: an empirical study," Statistical Papers, Springer, vol. 55(1), pages 15-28, February.
    10. Roelant, E. & Van Aelst, S. & Croux, C., 2009. "Multivariate generalized S-estimators," Journal of Multivariate Analysis, Elsevier, vol. 100(5), pages 876-887, May.
    11. Osorio, Felipe & Paula, Gilberto A. & Galea, Manuel, 2007. "Assessment of local influence in elliptical linear models with longitudinal structure," Computational Statistics & Data Analysis, Elsevier, vol. 51(9), pages 4354-4368, May.
    12. La Vecchia, Davide & Moor, Alban & Scaillet, Olivier, 2023. "A higher-order correct fast moving-average bootstrap for dependent data," Journal of Econometrics, Elsevier, vol. 235(1), pages 65-81.
    13. Luca Greco & Giovanni Saraceno & Claudio Agostinelli, 2021. "Robust Fitting of a Wrapped Normal Model to Multivariate Circular Data and Outlier Detection," Stats, MDPI, vol. 4(2), pages 1-18, June.
    14. Kudraszow, Nadia L. & Vahnovan, Alejandra V. & Ferrario, Julieta & Fasano, M. Victoria, 2025. "Robust generalized canonical correlation analysis based on scatter matrices," Computational Statistics & Data Analysis, Elsevier, vol. 206(C).
    15. Ronchetti, Elvezio, 2020. "Accurate and robust inference," Econometrics and Statistics, Elsevier, vol. 14(C), pages 74-88.
    16. Frahm, Gabriel, 2008. "Asymptotic distributions of robust shape matrices and scales," Discussion Papers in Econometrics and Statistics 5/07, University of Cologne, Institute of Econometrics and Statistics.
    17. Camponovo, Lorenzo & Scaillet, Olivier & Trojani, Fabio, 2012. "Robust subsampling," Journal of Econometrics, Elsevier, vol. 167(1), pages 197-210.
    18. Ghosh, Abhik & Mandal, Abhijit & Martín, Nirian & Pardo, Leandro, 2016. "Influence analysis of robust Wald-type tests," Journal of Multivariate Analysis, Elsevier, vol. 147(C), pages 102-126.
    19. Matías Salibián-Barrera & Stefan Aelst & Gert Willems, 2008. "Fast and robust bootstrap," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 17(1), pages 41-71, February.
    20. Marc Hallin & Davy Paindaveine & Thomas Verdebout, 2009. "Optimal rank-based testing for principal component," Working Papers ECARES 2009_013, ULB -- Universite Libre de Bruxelles.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:208:y:2025:i:c:s0047259x25000387. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.