IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v171y2019icp320-338.html
   My bibliography  Save this article

Semiparametric regression for measurement error model with heteroscedastic error

Author

Listed:
  • Li, Mengyan
  • Ma, Yanyuan
  • Li, Runze

Abstract

Covariate measurement error is a common problem. Improper treatment of measurement errors may affect the quality of estimation and the accuracy of inference. Extensive literature exists on homoscedastic measurement error models, but little research exists on heteroscedastic measurement. In this paper, we consider a general parametric regression model allowing for a covariate measured with heteroscedastic error. We allow both the variance function of the measurement errors and the conditional density function of the error-prone covariate given the error-free covariates to be completely unspecified. We treat the variance function using B-spline approximation and propose a semiparametric estimator based on efficient score functions to deal with the heteroscedasticity of the measurement error. The resulting estimator is consistent and enjoys good inference properties. Its finite-sample performance is demonstrated through simulation studies and a real data example.

Suggested Citation

  • Li, Mengyan & Ma, Yanyuan & Li, Runze, 2019. "Semiparametric regression for measurement error model with heteroscedastic error," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 320-338.
  • Handle: RePEc:eee:jmvana:v:171:y:2019:i:c:p:320-338
    DOI: 10.1016/j.jmva.2018.12.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X18301866
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2018.12.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Abhra Sarkar & Bani K. Mallick & Raymond J. Carroll, 2014. "Bayesian semiparametric regression in the presence of conditionally heteroscedastic measurement and regression errors," Biometrics, The International Biometric Society, vol. 70(4), pages 823-834, December.
    2. Devanarayan, Viswanath & Stefanski, Leonard A., 2002. "Empirical simulation extrapolation for measurement error models with replicate measurements," Statistics & Probability Letters, Elsevier, vol. 59(3), pages 219-225, October.
    3. Staudenmayer, John & Ruppert, David & Buonaccorsi, John P., 2008. "Density Estimation in the Presence of Heteroscedastic Measurement Error," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 726-736, June.
    4. Anastasios A. Tsiatis & Yanyuan Ma, 2004. "Locally efficient semiparametric estimators for functional measurement error models," Biometrika, Biometrika Trust, vol. 91(4), pages 835-848, December.
    5. Berry S. M. & Carroll R. J & Ruppert D., 2002. "Bayesian Smoothing and Regression Splines for Measurement Error Problems," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 160-169, March.
    6. Bertrand, A. & Legrand, C. & Léonard, D. & Van Keilegom, I., 2017. "Robustness of estimation methods in a survival cure model with mismeasured covariates," Computational Statistics & Data Analysis, Elsevier, vol. 113(C), pages 3-18.
    7. Bertrand, Aurelie & Legrand, Catherine & Leonard, Daniel & Van Keilegom, Ingrid, 2017. "Robustness of estimation methods in a survival cure model with mismeasured covariates," LIDAM Reprints ISBA 2017021, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Michal Pešta, 2021. "Changepoint in Error-Prone Relations," Mathematics, MDPI, vol. 9(1), pages 1-25, January.
    2. Roberto Mari & Antonello Maruotti, 2022. "A two-step estimator for generalized linear models for longitudinal data with time-varying measurement error," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(2), pages 273-300, June.
    3. Zhang, Yuexia & Qin, Guoyou & Zhu, Zhongyi & Zhang, Jiajia, 2022. "Empirical likelihood inference for longitudinal data with covariate measurement errors: An application to the LEAN study," Computational Statistics & Data Analysis, Elsevier, vol. 175(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Han, Bo & Wang, Xiaoguang, 2020. "Semiparametric estimation for the non-mixture cure model in case-cohort and nested case-control studies," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    2. Abhra Sarkar & Bani K. Mallick & Raymond J. Carroll, 2014. "Bayesian semiparametric regression in the presence of conditionally heteroscedastic measurement and regression errors," Biometrics, The International Biometric Society, vol. 70(4), pages 823-834, December.
    3. Sarah C. Lotspeich & Bryan E. Shepherd & Gustavo G. C. Amorim & Pamela A. Shaw & Ran Tao, 2022. "Efficient odds ratio estimation under two‐phase sampling using error‐prone data from a multi‐national HIV research cohort," Biometrics, The International Biometric Society, vol. 78(4), pages 1674-1685, December.
    4. Delaigle, Aurore & Fan, Jianqing & Carroll, Raymond J., 2009. "A Design-Adaptive Local Polynomial Estimator for the Errors-in-Variables Problem," Journal of the American Statistical Association, American Statistical Association, vol. 104(485), pages 348-359.
    5. Carroll, Raymond J. & Delaigle, Aurore & Hall, Peter, 2009. "Nonparametric Prediction in Measurement Error Models," Journal of the American Statistical Association, American Statistical Association, vol. 104(487), pages 993-1003.
    6. Aurélie Bertrand & Ingrid Van Keilegom & Catherine Legrand, 2019. "Flexible parametric approach to classical measurement error variance estimation without auxiliary data," Biometrics, The International Biometric Society, vol. 75(1), pages 297-307, March.
    7. Bertrand, Aurelie & Van Keilegom, Ingrid & Legrand, Catherine, 2017. "Flexible parametric approach to classical measurement error variance estimation without auxiliary data," LIDAM Discussion Papers ISBA 2017025, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    8. Yuedong Wang & Yanyuan Ma & Raymond J. Carroll, 2009. "Variance estimation in the analysis of microarray data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(2), pages 425-445, April.
    9. Yanyuan Ma & Marc G. Genton, 2010. "Explicit estimating equations for semiparametric generalized linear latent variable models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(4), pages 475-495, September.
    10. Bhadra, Anindya, 2017. "An expectation–maximization scheme for measurement error models," Statistics & Probability Letters, Elsevier, vol. 120(C), pages 61-68.
    11. Jullion, Astrid & Lambert, Philippe, 2007. "Robust specification of the roughness penalty prior distribution in spatially adaptive Bayesian P-splines models," Computational Statistics & Data Analysis, Elsevier, vol. 51(5), pages 2542-2558, February.
    12. Roy, Arkaprava & Sarkar, Abhra, 2023. "Bayesian semiparametric multivariate density deconvolution via stochastic rotation of replicates," Computational Statistics & Data Analysis, Elsevier, vol. 182(C).
    13. Stoklosa, Jakub & Huang, Yih-Huei & Furlan, Elise & Hwang, Wen-Han, 2016. "On quadratic logistic regression models when predictor variables are subject to measurement error," Computational Statistics & Data Analysis, Elsevier, vol. 95(C), pages 109-121.
    14. Kun Xu & Yanyuan Ma & Liqun Wang, 2015. "Instrument Assisted Regression for Errors in Variables Models with Binary Response," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(1), pages 104-117, March.
    15. J. R. Lockwood & Daniel F. McCaffrey, 2017. "Simulation-Extrapolation with Latent Heteroskedastic Error Variance," Psychometrika, Springer;The Psychometric Society, vol. 82(3), pages 717-736, September.
    16. Amico, Mailis & Van Keilegom, Ingrid, 2017. "Cure models in survival analysis," LIDAM Discussion Papers ISBA 2017007, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    17. Stephen C. Smith & Sungil Kwak, 2011. "Multidimensional Poverty and Interlocking Poverty Traps: Framework and Application to Ethiopian Household Panel Data," Working Papers 2011-04, The George Washington University, Institute for International Economic Policy.
    18. Yanyuan Ma & Jeffrey D. Hart & Ryan Janicki & Raymond J. Carroll, 2011. "Local and omnibus goodness‐of‐fit tests in classical measurement error models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 73(1), pages 81-98, January.
    19. Ciprian Crainiceanu & David Ruppert & M.P. Wand, 2004. "Bayesian Analysis for Penalized Spline Regression Using Win BUGS," Johns Hopkins University Dept. of Biostatistics Working Paper Series 1040, Berkeley Electronic Press.
    20. Jun Zhang & Zhenghui Feng & Peirong Xu & Hua Liang, 2017. "Generalized varying coefficient partially linear measurement errors models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(1), pages 97-120, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:171:y:2019:i:c:p:320-338. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.