IDEAS home Printed from
   My bibliography  Save this article

Efficient Hellinger distance estimates for semiparametric models


  • Wu, Jingjing
  • Karunamuni, Rohana J.


Minimum distance techniques have become increasingly important tools for solving statistical estimation and inference problems. In particular, the successful application of the Hellinger distance approach to fully parametric models is well known. The corresponding optimal estimators, known as minimum Hellinger distance estimators, achieve efficiency at the model density and simultaneously possess excellent robustness properties. For statistical models that are semiparametric, in that they have a potentially infinite dimensional unknown nuisance parameter, minimum distance methods have not been fully studied. In this paper, we extend the Hellinger distance approach to general semiparametric models and study minimum Hellinger distance estimators for semiparametric models. Asymptotic properties such as consistency, asymptotic normality, efficiency and adaptivity of the proposed estimators are investigated. Small sample and robustness properties of the proposed estimators are also examined using a Monte Carlo study. Two real data examples are analyzed as well.

Suggested Citation

  • Wu, Jingjing & Karunamuni, Rohana J., 2012. "Efficient Hellinger distance estimates for semiparametric models," Journal of Multivariate Analysis, Elsevier, vol. 107(C), pages 1-23.
  • Handle: RePEc:eee:jmvana:v:107:y:2012:i:c:p:1-23
    DOI: 10.1016/j.jmva.2012.01.007

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Woo, Mi-Ja & Sriram, T.N., 2007. "Robust estimation of mixture complexity for count data," Computational Statistics & Data Analysis, Elsevier, vol. 51(9), pages 4379-4392, May.
    2. Takada, Teruko, 2009. "Simulated minimum Hellinger distance estimation of stochastic volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2390-2403, April.
    3. Woo, Mi-Ja & Sriram, T.N., 2006. "Robust Estimation of Mixture Complexity," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1475-1486, December.
    4. Sriram, T. N. & Vidyashankar, A. N., 2000. "Minimum Hellinger distance estimation for supercritical Galton-Watson processes," Statistics & Probability Letters, Elsevier, vol. 50(4), pages 331-342, December.
    5. Ayanendranath Basu & Bruce Lindsay, 1994. "Minimum disparity estimation for continuous models: Efficiency, distributions and robustness," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 46(4), pages 683-705, December.
    6. Murphy, S. A. & Van Der Vaart, A. W., 1996. "Likelihood Inference in the Errors-in-Variables Model," Journal of Multivariate Analysis, Elsevier, vol. 59(1), pages 81-108, October.
    7. Wu, Jingjing & Karunamuni, Rohana & Zhang, Biao, 2010. "Minimum Hellinger distance estimation in a two-sample semiparametric model," Journal of Multivariate Analysis, Elsevier, vol. 101(5), pages 1102-1122, May.
    8. Zudi Lu & Yer Van Hui & Andy H. Lee, 2003. "Minimum Hellinger Distance Estimation for Finite Mixtures of Poisson Regression Models and Its Applications," Biometrics, The International Biometric Society, vol. 59(4), pages 1016-1026, December.
    9. Karlis, Dimitris & Xekalaki, Evdokia, 1998. "Minimum Hellinger distance estimation for Poisson mixtures," Computational Statistics & Data Analysis, Elsevier, vol. 29(1), pages 81-103, November.
    10. Laurent Bordes & CĂ©line Delmas & Pierre Vandekerkhove, 2006. "Semiparametric Estimation of a Two-component Mixture Model where One Component is known," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 33(4), pages 733-752.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Annabel Prause & Ansgar Steland & Mohammed Abujarad, 2016. "Minimum Hellinger distance estimation for bivariate samples and time series with applications to nonlinear regression and copula-based models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 79(4), pages 425-455, May.
    2. Karunamuni, Rohana J. & Tang, Qingguo & Zhao, Bangxin, 2015. "Robust and efficient estimation of effective dose," Computational Statistics & Data Analysis, Elsevier, vol. 90(C), pages 47-60.
    3. repec:spr:aistmt:v:70:y:2018:i:3:d:10.1007_s10463-017-0602-4 is not listed on IDEAS
    4. Tang, Qingguo & Karunamuni, Rohana J., 2013. "Minimum distance estimation in a finite mixture regression model," Journal of Multivariate Analysis, Elsevier, vol. 120(C), pages 185-204.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:107:y:2012:i:c:p:1-23. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.