IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v90y2015icp47-60.html

Robust and efficient estimation of effective dose

Author

Listed:
  • Karunamuni, Rohana J.
  • Tang, Qingguo
  • Zhao, Bangxin

Abstract

In dose–response studies, experimenters are often interested in estimating the effective dose EDp, the dose at which the probability of response is p,0

Suggested Citation

  • Karunamuni, Rohana J. & Tang, Qingguo & Zhao, Bangxin, 2015. "Robust and efficient estimation of effective dose," Computational Statistics & Data Analysis, Elsevier, vol. 90(C), pages 47-60.
  • Handle: RePEc:eee:csdana:v:90:y:2015:i:c:p:47-60
    DOI: 10.1016/j.csda.2015.04.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947315000985
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2015.04.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Dette, Holger & Neumeyer, Natalie & Pilz, Kay F., 2005. "A Note on Nonparametric Estimation of the Effective Dose in Quantal Bioassay," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 503-510, June.
    2. Björn Bornkamp & Katja Ickstadt, 2009. "Bayesian Nonparametric Estimation of Continuous Monotone Functions with Applications to Dose–Response Analysis," Biometrics, The International Biometric Society, vol. 65(1), pages 198-205, March.
    3. Huang, Yangxin, 2001. "Interval estimation of the ED50 when a logistic dose-response curve is incorrectly assumed," Computational Statistics & Data Analysis, Elsevier, vol. 36(4), pages 525-537, June.
    4. Dette, Holger & Bretz, Frank & Pepelyshev, Andrey & Pinheiro, José, 2008. "Optimal Designs for Dose-Finding Studies," Journal of the American Statistical Association, American Statistical Association, vol. 103(483), pages 1225-1237.
    5. Saurabh Mukhopadhyay, 2000. "Bayesian Nonparametric Inference on the Dose Level with Specified Response Rate," Biometrics, The International Biometric Society, vol. 56(1), pages 220-226, March.
    6. Ying Yuan & Guosheng Yin, 2011. "Dose–Response Curve Estimation: A Semiparametric Mixture Approach," Biometrics, The International Biometric Society, vol. 67(4), pages 1543-1554, December.
    7. Pengfei Li & Douglas P. Wiens, 2011. "Robustness of design in dose–response studies," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 73(2), pages 215-238, March.
    8. Wu, Jingjing & Karunamuni, Rohana J., 2012. "Efficient Hellinger distance estimates for semiparametric models," Journal of Multivariate Analysis, Elsevier, vol. 107(C), pages 1-23.
    9. Karunamuni, Rohana J. & Wu, Jingjing, 2011. "One-step minimum Hellinger distance estimation," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3148-3164, December.
    10. D. M. Giltinan & T. P. Capizzi & H. Malani, 1988. "Diagnostic Tests for Similar Action of Two Compounds," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 37(1), pages 39-50, March.
    11. Tang, Qingguo & Karunamuni, Rohana J., 2013. "Minimum distance estimation in a finite mixture regression model," Journal of Multivariate Analysis, Elsevier, vol. 120(C), pages 185-204.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jingjing Wu & Rohana J. Karunamuni, 2018. "Efficient and robust tests for semiparametric models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(4), pages 761-788, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jingjing Wu & Rohana J. Karunamuni, 2018. "Efficient and robust tests for semiparametric models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(4), pages 761-788, August.
    2. Qingguo Tang & R. J. Karunamuni, 2018. "Robust variable selection for finite mixture regression models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(3), pages 489-521, June.
    3. Nilabja Guha & Anindya Roy & Leonid Kopylev & John Fox & Maria Spassova & Paul White, 2013. "Nonparametric Bayesian Methods for Benchmark Dose Estimation," Risk Analysis, John Wiley & Sons, vol. 33(9), pages 1608-1619, September.
    4. Ying Yuan & Guosheng Yin, 2011. "Dose–Response Curve Estimation: A Semiparametric Mixture Approach," Biometrics, The International Biometric Society, vol. 67(4), pages 1543-1554, December.
    5. Ding, Bowei & Karunamuni, Rohana J. & Wu, Jingjing, 2025. "Minimum profile Hellinger distance estimation of general covariate models," Computational Statistics & Data Analysis, Elsevier, vol. 202(C).
    6. Wiens, Douglas P., 2021. "Robust designs for dose–response studies: Model and labelling robustness," Computational Statistics & Data Analysis, Elsevier, vol. 158(C).
    7. Drovandi, Christopher C. & McGree, James M. & Pettitt, Anthony N., 2013. "Sequential Monte Carlo for Bayesian sequentially designed experiments for discrete data," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 320-335.
    8. Kassandra Fronczyk & Athanasios Kottas, 2014. "A Bayesian approach to the analysis of quantal bioassay studies using nonparametric mixture models," Biometrics, The International Biometric Society, vol. 70(1), pages 95-102, March.
    9. Tang, Qingguo & Karunamuni, Rohana J., 2013. "Minimum distance estimation in a finite mixture regression model," Journal of Multivariate Analysis, Elsevier, vol. 120(C), pages 185-204.
    10. Yu, Jun & Meng, Xiran & Wang, Yaping, 2023. "Optimal designs for semi-parametric dose-response models under random contamination," Computational Statistics & Data Analysis, Elsevier, vol. 178(C).
    11. Jingjing Wu & Tasnima Abedin & Qiang Zhao, 2023. "Semiparametric modelling of two-component mixtures with stochastic dominance," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 75(1), pages 39-70, February.
    12. Luo, Yao, 2020. "Unobserved heterogeneity in auctions under restricted stochastic dominance," Journal of Econometrics, Elsevier, vol. 216(2), pages 354-374.
    13. Holger Dette & Laura Hoyden & Sonja Kuhnt & Kirsten Schorning, 2017. "Optimal designs for thermal spraying," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(1), pages 53-72, January.
    14. Guosheng Yin & Yisheng Li & Yuan Ji, 2006. "Bayesian Dose-Finding in Phase I/II Clinical Trials Using Toxicity and Efficacy Odds Ratios," Biometrics, The International Biometric Society, vol. 62(3), pages 777-787, September.
    15. McGree, J.M., 2017. "Developments of the total entropy utility function for the dual purpose of model discrimination and parameter estimation in Bayesian design," Computational Statistics & Data Analysis, Elsevier, vol. 113(C), pages 207-225.
    16. Krief, Jerome M., 2017. "Direct instrumental nonparametric estimation of inverse regression functions," Journal of Econometrics, Elsevier, vol. 201(1), pages 95-107.
    17. Y. Fong & J. Wakefield & S. De Rosa & N. Frahm, 2012. "A Robust Bayesian Random Effects Model for Nonlinear Calibration Problems," Biometrics, The International Biometric Society, vol. 68(4), pages 1103-1112, December.
    18. Amir Ali Nasrollahzadeh & Amin Khademi, 2022. "Dynamic Programming for Response-Adaptive Dose-Finding Clinical Trials," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 1176-1190, March.
    19. Walter W. Piegorsch & Hui Xiong & Rabi N. Bhattacharya & Lizhen Lin, 2014. "Benchmark Dose Analysis via Nonparametric Regression Modeling," Risk Analysis, John Wiley & Sons, vol. 34(1), pages 135-151, January.
    20. Giuliano Galimberti & Lorenzo Nuzzi & Gabriele Soffritti, 2021. "Covariance matrix estimation of the maximum likelihood estimator in multivariate clusterwise linear regression," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(1), pages 235-268, March.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:90:y:2015:i:c:p:47-60. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.