IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v59y2003i4p1016-1026.html
   My bibliography  Save this article

Minimum Hellinger Distance Estimation for Finite Mixtures of Poisson Regression Models and Its Applications

Author

Listed:
  • Zudi Lu
  • Yer Van Hui
  • Andy H. Lee

Abstract

No abstract is available for this item.

Suggested Citation

  • Zudi Lu & Yer Van Hui & Andy H. Lee, 2003. "Minimum Hellinger Distance Estimation for Finite Mixtures of Poisson Regression Models and Its Applications," Biometrics, The International Biometric Society, vol. 59(4), pages 1016-1026, December.
  • Handle: RePEc:bla:biomet:v:59:y:2003:i:4:p:1016-1026
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/j.0006-341X.2003.00117.x
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xiao, Jianguo & Lee, Andy H. & Vemuri, Siva Ram, 1999. "Mixture distribution analysis of length of hospital stay for efficient funding," Socio-Economic Planning Sciences, Elsevier, vol. 33(1), pages 39-59, March.
    2. Karlis, Dimitris & Xekalaki, Evdokia, 1998. "Minimum Hellinger distance estimation for Poisson mixtures," Computational Statistics & Data Analysis, Elsevier, vol. 29(1), pages 81-103, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chee, Chew-Seng, 2017. "A mixture model-based nonparametric approach to estimating a count distribution," Computational Statistics & Data Analysis, Elsevier, vol. 109(C), pages 34-44.
    2. Takada, Teruko, 2009. "Simulated minimum Hellinger distance estimation of stochastic volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2390-2403, April.
    3. Giet, Ludovic & Lubrano, Michel, 2008. "A minimum Hellinger distance estimator for stochastic differential equations: An application to statistical inference for continuous time interest rate models," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 2945-2965, February.
    4. Liming Xiang & Kelvin K. W. Yau & Yer Van Hui & Andy H. Lee, 2008. "Minimum Hellinger Distance Estimation for k-Component Poisson Mixture with Random Effects," Biometrics, The International Biometric Society, vol. 64(2), pages 508-518, June.
    5. Qingguo Tang & R. J. Karunamuni, 2018. "Robust variable selection for finite mixture regression models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(3), pages 489-521, June.
    6. Luca Greco, 2022. "Robust fitting of mixtures of GLMs by weighted likelihood," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 106(1), pages 25-48, March.
    7. Daniel B. Hall & Jing Shen, 2010. "Robust Estimation for Zero‐Inflated Poisson Regression," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 37(2), pages 237-252, June.
    8. Wu, Jingjing & Karunamuni, Rohana J., 2012. "Efficient Hellinger distance estimates for semiparametric models," Journal of Multivariate Analysis, Elsevier, vol. 107(C), pages 1-23.
    9. Jingjing Wu & Tasnima Abedin & Qiang Zhao, 2023. "Semiparametric modelling of two-component mixtures with stochastic dominance," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 75(1), pages 39-70, February.
    10. Borislava Mihaylova & Andrew Briggs & Anthony O'Hagan & Simon G. Thompson, 2011. "Review of statistical methods for analysing healthcare resources and costs," Health Economics, John Wiley & Sons, Ltd., vol. 20(8), pages 897-916, August.
    11. Yunus Emre Ayözen & Hakan İnaç & Abdulkadir Atalan & Cem Çağrı Dönmez, 2022. "E-Scooter Micro-Mobility Application for Postal Service: The Case of Turkey for Energy, Environment, and Economy Perspectives," Energies, MDPI, vol. 15(20), pages 1-22, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Woo, Mi-Ja & Sriram, T.N., 2007. "Robust estimation of mixture complexity for count data," Computational Statistics & Data Analysis, Elsevier, vol. 51(9), pages 4379-4392, May.
    2. Xiang, Liming & Tse, Siu-Keung & Lee, Andy H., 2002. "Influence diagnostics for generalized linear mixed models: applications to clustered data," Computational Statistics & Data Analysis, Elsevier, vol. 40(4), pages 759-774, October.
    3. Sara Dias & Valeska Andreozzi & Rosário Martins, 2013. "Analysis of HIV/AIDS DRG in Portugal: a hierarchical finite mixture model," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 14(5), pages 715-723, October.
    4. Derek S. Young & Xi Chen & Dilrukshi C. Hewage & Ricardo Nilo-Poyanco, 2019. "Finite mixture-of-gamma distributions: estimation, inference, and model-based clustering," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(4), pages 1053-1082, December.
    5. Wooi Chen Khoo & Seng Huat Ong & Atanu Biswas, 2017. "Modeling time series of counts with a new class of INAR(1) model," Statistical Papers, Springer, vol. 58(2), pages 393-416, June.
    6. Eva Williford & Valerie Haley & Louise-Anne McNutt & Victoria Lazariu, 2020. "Dealing with highly skewed hospital length of stay distributions: The use of Gamma mixture models to study delivery hospitalizations," PLOS ONE, Public Library of Science, vol. 15(4), pages 1-18, April.
    7. Tang, Qingguo & Karunamuni, Rohana J., 2013. "Minimum distance estimation in a finite mixture regression model," Journal of Multivariate Analysis, Elsevier, vol. 120(C), pages 185-204.
    8. Chungkham Singh & Laishram Ladusingh, 2010. "Inpatient length of stay: a finite mixture modeling analysis," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 11(2), pages 119-126, April.
    9. Takada, Teruko, 2009. "Simulated minimum Hellinger distance estimation of stochastic volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2390-2403, April.
    10. Karunamuni, Rohana J. & Wu, Jingjing, 2011. "One-step minimum Hellinger distance estimation," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3148-3164, December.
    11. Chee, Chew-Seng, 2017. "A mixture model-based nonparametric approach to estimating a count distribution," Computational Statistics & Data Analysis, Elsevier, vol. 109(C), pages 34-44.
    12. Wu, Jingjing & Karunamuni, Rohana J., 2012. "Efficient Hellinger distance estimates for semiparametric models," Journal of Multivariate Analysis, Elsevier, vol. 107(C), pages 1-23.
    13. Jingjing Wu & Tasnima Abedin & Qiang Zhao, 2023. "Semiparametric modelling of two-component mixtures with stochastic dominance," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 75(1), pages 39-70, February.
    14. Umashanger, T. & Sriram, T.N., 2009. "L2E estimation of mixture complexity for count data," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 4243-4254, October.
    15. Liming Xiang & Andy Lee & Siu-Keung Tse, 2003. "Assessing local cluster influence in generalized linear mixed models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 30(4), pages 349-359.
    16. Yau, Kelvin K. W. & Lee, Andy H. & Ng, Angus S. K., 2003. "Finite mixture regression model with random effects: application to neonatal hospital length of stay," Computational Statistics & Data Analysis, Elsevier, vol. 41(3-4), pages 359-366, January.
    17. Wang, Yong, 2007. "Minimum disparity computation via the iteratively reweighted least integrated squares algorithms," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 5662-5672, August.
    18. Liming Xiang & Kelvin K. W. Yau & Yer Van Hui & Andy H. Lee, 2008. "Minimum Hellinger Distance Estimation for k-Component Poisson Mixture with Random Effects," Biometrics, The International Biometric Society, vol. 64(2), pages 508-518, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:59:y:2003:i:4:p:1016-1026. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.