IDEAS home Printed from
   My bibliography  Save this article

Adaptive nonparametric regression on spin fiber bundles


  • Durastanti, Claudio
  • Geller, Daryl
  • Marinucci, Domenico


The construction of adaptive nonparametric procedures by means of wavelet thresholding techniques is now a classical topic in modern mathematical statistics. In this paper, we extend this framework to the analysis of nonparametric regression on sections of spin fiber bundles defined on the sphere. This can be viewed as a regression problem where the function to be estimated takes as its values algebraic curves (for instance, ellipses) rather than scalars, as usual. The problem is motivated by many important astrophysical applications, concerning, for instance, the analysis of the weak gravitational lensing effect, i.e. the distortion effect of gravity on the images of distant galaxies. We propose a thresholding procedure based upon the (mixed) spin needlets construction recently advocated by Geller and Marinucci (2008, 2010) and Geller et al. (2008, 2009), and we investigate their rates of convergence and their adaptive properties over spin Besov balls.

Suggested Citation

  • Durastanti, Claudio & Geller, Daryl & Marinucci, Domenico, 2012. "Adaptive nonparametric regression on spin fiber bundles," Journal of Multivariate Analysis, Elsevier, vol. 104(1), pages 16-38, February.
  • Handle: RePEc:eee:jmvana:v:104:y:2012:i:1:p:16-38

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Kim, Peter T. & Koo, Ja-Yong, 2002. "Optimal Spherical Deconvolution," Journal of Multivariate Analysis, Elsevier, vol. 80(1), pages 21-42, January.
    2. Gérard Kerkyacharian & Dominique Picard & Lucien Birgé & Peter Hall & Oleg Lepski & Enno Mammen & Alexandre Tsybakov & G. Kerkyacharian & D. Picard, 2000. "Thresholding algorithms, maxisets and well-concentrated bases," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 9(2), pages 283-344, December.
    3. Baldi, Paolo & Marinucci, Domenico, 2007. "Some characterizations of the spherical harmonics coefficients for isotropic random fields," Statistics & Probability Letters, Elsevier, vol. 77(5), pages 490-496, March.
    4. Koo, Ja-Yong & Kim, Peter T., 2008. "Sharp adaptation for spherical inverse problems with applications to medical imaging," Journal of Multivariate Analysis, Elsevier, vol. 99(2), pages 165-190, February.
    5. Kim, Peter T. & Koo, Ja-Yong & Luo, Zhi-Ming, 2009. "Weyl eigenvalue asymptotics and sharp adaptation on vector bundles," Journal of Multivariate Analysis, Elsevier, vol. 100(9), pages 1962-1978, October.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Durastanti, Claudio, 2016. "Adaptive global thresholding on the sphere," Journal of Multivariate Analysis, Elsevier, vol. 151(C), pages 110-132.
    2. Claudio Durastanti, 2016. "Quantitative central limit theorems for Mexican needlet coefficients on circular Poisson fields," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 25(4), pages 651-673, November.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:104:y:2012:i:1:p:16-38. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.