IDEAS home Printed from
   My bibliography  Save this article

On qualitative robustness of support vector machines


  • Hable, Robert
  • Christmann, Andreas


Support vector machines (SVMs) have attracted much attention in theoretical and in applied statistics. The main topics of recent interest are consistency, learning rates and robustness. We address the open problem whether SVMs are qualitatively robust. Our results show that SVMs are qualitatively robust for any fixed regularization parameter [lambda]. However, under extremely mild conditions on the SVM, it turns out that SVMs are not qualitatively robust any more for any null sequence [lambda]n, which are the classical sequences needed to obtain universal consistency. This lack of qualitative robustness is of a rather theoretical nature because we show that, in any case, SVMs fulfill a finite sample qualitative robustness property. For a fixed regularization parameter, SVMs can be represented by a functional on the set of all probability measures. Qualitative robustness is proven by showing that this functional is continuous with respect to the topology generated by weak convergence of probability measures. Combined with the existence and uniqueness of SVMs, our results show that SVMs are the solutions of a well-posed mathematical problem in Hadamard's sense.

Suggested Citation

  • Hable, Robert & Christmann, Andreas, 2011. "On qualitative robustness of support vector machines," Journal of Multivariate Analysis, Elsevier, vol. 102(6), pages 993-1007, July.
  • Handle: RePEc:eee:jmvana:v:102:y:2011:i:6:p:993-1007

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Bartlett, Peter L. & Jordan, Michael I. & McAuliffe, Jon D., 2006. "Convexity, Classification, and Risk Bounds," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 138-156, March.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Christmann, Andreas & Hable, Robert, 2012. "Consistency of support vector machines using additive kernels for additive models," Computational Statistics & Data Analysis, Elsevier, vol. 56(4), pages 854-873.
    2. Hable, Robert, 2012. "Asymptotic normality of support vector machine variants and other regularized kernel methods," Journal of Multivariate Analysis, Elsevier, vol. 106(C), pages 92-117.
    3. Zähle, Henryk, 2016. "A definition of qualitative robustness for general point estimators, and examples," Journal of Multivariate Analysis, Elsevier, vol. 143(C), pages 12-31.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:102:y:2011:i:6:p:993-1007. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.