IDEAS home Printed from
   My bibliography  Save this article

Asymptotic normality of support vector machine variants and other regularized kernel methods


  • Hable, Robert


In nonparametric classification and regression problems, regularized kernel methods, in particular support vector machines, attract much attention in theoretical and in applied statistics. In an abstract sense, regularized kernel methods (simply called SVMs here) can be seen as regularized M-estimators for a parameter in a (typically infinite dimensional) reproducing kernel Hilbert space. For smooth loss functions L, it is shown that the difference between the estimator, i.e. the empirical SVM fL,Dn,λDn, and the theoretical SVM fL,P,λ0 is asymptotically normal with rate n. That is, n(fL,Dn,λDn−fL,P,λ0) converges weakly to a Gaussian process in the reproducing kernel Hilbert space. As common in real applications, the choice of the regularization parameter Dn in fL,Dn,λDn may depend on the data. The proof is done by an application of the functional delta-method and by showing that the SVM-functional P↦fL,P,λ is suitably Hadamard-differentiable.

Suggested Citation

  • Hable, Robert, 2012. "Asymptotic normality of support vector machine variants and other regularized kernel methods," Journal of Multivariate Analysis, Elsevier, vol. 106(C), pages 92-117.
  • Handle: RePEc:eee:jmvana:v:106:y:2012:i:c:p:92-117
    DOI: 10.1016/j.jmva.2011.11.004

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Hable, Robert & Christmann, Andreas, 2011. "On qualitative robustness of support vector machines," Journal of Multivariate Analysis, Elsevier, vol. 102(6), pages 993-1007, July.
    Full references (including those not matched with items on IDEAS)


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:106:y:2012:i:c:p:92-117. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.