IDEAS home Printed from
   My bibliography  Save this article

Generalized Marshall-Olkin distributions and related bivariate aging properties


  • Li, Xiaohu
  • Pellerey, Franco


A class of generalized bivariate Marshall-Olkin distributions, which includes as special cases the Marshall-Olkin bivariate exponential distribution and the Marshall-Olkin type distribution due to Muliere and Scarsini (1987) [19] are examined in this paper. Stochastic comparison results are derived, and bivariate aging properties, together with properties related to evolution of dependence along time, are investigated for this class of distributions. Extensions of results previously presented in the literature are provided as well.

Suggested Citation

  • Li, Xiaohu & Pellerey, Franco, 2011. "Generalized Marshall-Olkin distributions and related bivariate aging properties," Journal of Multivariate Analysis, Elsevier, vol. 102(10), pages 1399-1409, November.
  • Handle: RePEc:eee:jmvana:v:102:y:2011:i:10:p:1399-1409

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Navarro, Jorge & Balakrishnan, N., 2010. "Study of some measures of dependence between order statistics and systems," Journal of Multivariate Analysis, Elsevier, vol. 101(1), pages 52-67, January.
    2. Asimit, Alexandru V. & Furman, Edward & Vernic, Raluca, 2010. "On a multivariate Pareto distribution," Insurance: Mathematics and Economics, Elsevier, vol. 46(2), pages 308-316, April.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Jayme Pinto & Nikolai Kolev, 2016. "A class of continuous bivariate distributions with linear sum of hazard gradient components," Journal of Statistical Distributions and Applications, Springer, vol. 3(1), pages 1-17, December.
    2. Pinto, Jayme & Kolev, Nikolai, 2015. "Sibuya-type bivariate lack of memory property," Journal of Multivariate Analysis, Elsevier, vol. 134(C), pages 119-128.
    3. Pellerey, Franco & Shaked, Moshe & Yasaei Sekeh, Salimeh, 2012. "Comparisons of concordance in additive models," Statistics & Probability Letters, Elsevier, vol. 82(11), pages 2059-2067.
    4. Yinping You & Xiaohu Li & Narayanaswamy Balakrishnan, 2014. "On extremes of bivariate residual lifetimes from generalized Marshall–Olkin and time transformed exponential models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 77(8), pages 1041-1056, November.
    5. Li, Yang & Sun, Jianguo & Song, Shuguang, 2012. "Statistical analysis of bivariate failure time data with Marshall–Olkin Weibull models," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 2041-2050.
    6. Mercier, Sophie & Pham, Hai Ha, 2017. "A bivariate failure time model with random shocks and mixed effects," Journal of Multivariate Analysis, Elsevier, vol. 153(C), pages 33-51.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:102:y:2011:i:10:p:1399-1409. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.