IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v49y2011i1p61-69.html
   My bibliography  Save this article

On "optimal pension management in a stochastic framework" with exponential utility

Author

Listed:
  • Ma, Qing-Ping

Abstract

This paper reconsiders the optimal asset allocation problem in a stochastic framework for defined-contribution pension plans with exponential utility, which has been investigated by Battocchio and Menoncin [Battocchio, P., Menoncin, F., 2004. Optimal pension management in a stochastic framework. Insurance: Math. Econ. 34, 79-95]. When there are three types of asset, cash, bond and stock, and a non-hedgeable wage risk, the optimal pension portfolio composition is horizon dependent for pension plan members whose terminal utility is an exponential function of real wealth (nominal wealth-to-price index ratio). With market parameters usually assumed, wealth invested in bond and stock increases as retirement approaches, and wealth invested in cash asset decreases. The present study also shows that there are errors in the formulation of the wealth process and control variables in solving the optimization problem in the study of Battocchio and Menoncin, which render their solution erroneous and lead to wrong results in their numerical simulation.

Suggested Citation

  • Ma, Qing-Ping, 2011. "On "optimal pension management in a stochastic framework" with exponential utility," Insurance: Mathematics and Economics, Elsevier, vol. 49(1), pages 61-69, July.
  • Handle: RePEc:eee:insuma:v:49:y:2011:i:1:p:61-69
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167668711000254
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vasicek, Oldrich, 1977. "An equilibrium characterization of the term structure," Journal of Financial Economics, Elsevier, vol. 5(2), pages 177-188, November.
    2. Deelstra, Griselda & Grasselli, Martino & Koehl, Pierre-Francois, 2003. "Optimal investment strategies in the presence of a minimum guarantee," Insurance: Mathematics and Economics, Elsevier, vol. 33(1), pages 189-207, August.
    3. Vasicek, Oldrich Alfonso, 1977. "Abstract: An Equilibrium Characterization of the Term Structure," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 12(04), pages 627-627, November.
    4. Henderson, Vicky, 2005. "Explicit solutions to an optimal portfolio choice problem with stochastic income," Journal of Economic Dynamics and Control, Elsevier, vol. 29(7), pages 1237-1266, July.
    5. Cairns, Andrew J.G. & Blake, David & Dowd, Kevin, 2006. "Stochastic lifestyling: Optimal dynamic asset allocation for defined contribution pension plans," Journal of Economic Dynamics and Control, Elsevier, vol. 30(5), pages 843-877, May.
    6. Griselda Deelstra & Martino Grasselli & Pierre-François Koehl, 2003. "Optimal investment strategies in the presence of a minimum guarantee," ULB Institutional Repository 2013/7598, ULB -- Universite Libre de Bruxelles.
    7. Robert R. Bliss & Nikolaos Panigirtzoglou, 2004. "Option-Implied Risk Aversion Estimates," Journal of Finance, American Finance Association, vol. 59(1), pages 407-446, February.
    8. Boulier, Jean-Francois & Huang, ShaoJuan & Taillard, Gregory, 2001. "Optimal management under stochastic interest rates: the case of a protected defined contribution pension fund," Insurance: Mathematics and Economics, Elsevier, vol. 28(2), pages 173-189, April.
    9. Battocchio, Paolo & Menoncin, Francesco, 2004. "Optimal pension management in a stochastic framework," Insurance: Mathematics and Economics, Elsevier, vol. 34(1), pages 79-95, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yao, Haixiang & Yang, Zhou & Chen, Ping, 2013. "Markowitz’s mean–variance defined contribution pension fund management under inflation: A continuous-time model," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 851-863.
    2. Yao, Haixiang & Lai, Yongzeng & Ma, Qinghua & Jian, Minjie, 2014. "Asset allocation for a DC pension fund with stochastic income and mortality risk: A multi-period mean–variance framework," Insurance: Mathematics and Economics, Elsevier, vol. 54(C), pages 84-92.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:49:y:2011:i:1:p:61-69. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.