IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v42y2008i1p147-153.html
   My bibliography  Save this article

Random sums of exchangeable variables and actuarial applications

Author

Listed:
  • Kolev, Nikolai
  • Paiva, Delhi

Abstract

In this paper we study the accumulated claim in some fixed time period, skipping the classical assumption of mutual independence between the variables involved. Two basic models are considered: Model 1 assumes that any pair of claims are equally correlated which means that the corresponding square-integrable sequence is exchangeable one. Model 2 states that the correlations between the adjacent claims are the same. Recurrence and explicit expressions for the joint probability generating function are derived and the impact of the dependence parameter (correlation coefficient) in both models is examined. The Markov binomial distribution is obtained as a particular case under assumptions of Model 2.

Suggested Citation

  • Kolev, Nikolai & Paiva, Delhi, 2008. "Random sums of exchangeable variables and actuarial applications," Insurance: Mathematics and Economics, Elsevier, vol. 42(1), pages 147-153, February.
  • Handle: RePEc:eee:insuma:v:42:y:2008:i:1:p:147-153
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-6687(07)00011-X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Dhaene, J. & Denuit, M. & Goovaerts, M. J. & Kaas, R. & Vyncke, D., 2002. "The concept of comonotonicity in actuarial science and finance: theory," Insurance: Mathematics and Economics, Elsevier, vol. 31(1), pages 3-33, August.
    2. Cossette, Helene & Landriault, David & Marceau, Etienne, 2004. "Compound binomial risk model in a markovian environment," Insurance: Mathematics and Economics, Elsevier, vol. 35(2), pages 425-443, October.
    3. Dhaene, J. & Denuit, M. & Goovaerts, M. J. & Kaas, R. & Vyncke, D., 2002. "The concept of comonotonicity in actuarial science and finance: applications," Insurance: Mathematics and Economics, Elsevier, vol. 31(2), pages 133-161, October.
    4. Kolev, Nikolai & Paiva, Delhi, 2005. "Multinomial model for random sums," Insurance: Mathematics and Economics, Elsevier, vol. 37(3), pages 494-504, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Eryilmaz, Serkan, 2017. "On compound sums under dependence," Insurance: Mathematics and Economics, Elsevier, vol. 72(C), pages 228-234.
    2. Anastasiadis, Simon & Chukova, Stefanka, 2012. "Multivariate insurance models: An overview," Insurance: Mathematics and Economics, Elsevier, vol. 51(1), pages 222-227.
    3. Pires, Rubiane M. & Diniz, Carlos A.R., 2012. "Correlated binomial regression models," Computational Statistics & Data Analysis, Elsevier, vol. 56(8), pages 2513-2525.
    4. Jorge A. Sefair & Oscar Guaje & Andrés L. Medaglia, 2021. "A column-oriented optimization approach for the generation of correlated random vectors," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(3), pages 777-808, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rieger, Marc Oliver, 2017. "Characterization of acceptance sets for co-monotone risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 74(C), pages 147-152.
    2. Choo, Weihao & de Jong, Piet, 2015. "The tradeoff insurance premium as a two-sided generalisation of the distortion premium," Insurance: Mathematics and Economics, Elsevier, vol. 65(C), pages 238-246.
    3. Dimitrios G. Konstantinides & Georgios C. Zachos, 2019. "Exhibiting Abnormal Returns Under a Risk Averse Strategy," Methodology and Computing in Applied Probability, Springer, vol. 21(2), pages 551-566, June.
    4. Zheng, Yanting & Yang, Jingping & Huang, Jianhua Z., 2011. "Approximation of bivariate copulas by patched bivariate Fréchet copulas," Insurance: Mathematics and Economics, Elsevier, vol. 48(2), pages 246-256, March.
    5. Denuit, Michel & Dhaene, Jan, 2012. "Convex order and comonotonic conditional mean risk sharing," Insurance: Mathematics and Economics, Elsevier, vol. 51(2), pages 265-270.
    6. Goovaerts, Marc J. & Kaas, Rob & Dhaene, Jan & Tang, Qihe, 2004. "Some new classes of consistent risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 34(3), pages 505-516, June.
    7. Cheung, Ka Chun, 2008. "Improved convex upper bound via conditional comonotonicity," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 651-655, April.
    8. Yiying Zhang & Weiyong Ding & Peng Zhao, 2018. "On total capacity of k‐out‐of‐n systems with random weights," Naval Research Logistics (NRL), John Wiley & Sons, vol. 65(4), pages 347-359, June.
    9. Wan-Ni Lai & Yi-Ting Chen & Edward W. Sun, 2021. "Comonotonicity and low volatility effect," Annals of Operations Research, Springer, vol. 299(1), pages 1057-1099, April.
    10. Antonella Campana, 2007. "On Tail Value-at-Risk for sums of non-independent random variables with a generalized Pareto distribution," The Geneva Papers on Risk and Insurance Theory, Springer;International Association for the Study of Insurance Economics (The Geneva Association), vol. 32(2), pages 169-180, December.
    11. Said Khalil, 2022. "Expectile-based capital allocation," Working Papers hal-03816525, HAL.
    12. Alain Chateauneuf & Mina Mostoufi & David Vyncke, 2015. "Comonotonic Monte Carlo and its applications in option pricing and quantification of risk," Documents de travail du Centre d'Economie de la Sorbonne 15015, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    13. Gilles Boevi Koumou & Georges Dionne, 2022. "Coherent Diversification Measures in Portfolio Theory: An Axiomatic Foundation," Risks, MDPI, vol. 10(11), pages 1-19, October.
    14. Yang, Jingping & Cheng, Shihong & Zhang, Lihong, 2006. "Bivariate copula decomposition in terms of comonotonicity, countermonotonicity and independence," Insurance: Mathematics and Economics, Elsevier, vol. 39(2), pages 267-284, October.
    15. Huang, H. & Milevsky, M. A. & Wang, J., 2004. "Ruined moments in your life: how good are the approximations?," Insurance: Mathematics and Economics, Elsevier, vol. 34(3), pages 421-447, June.
    16. Goovaerts, Marc & Linders, Daniël & Van Weert, Koen & Tank, Fatih, 2012. "On the interplay between distortion, mean value and Haezendonck–Goovaerts risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 51(1), pages 10-18.
    17. Jinghui Chen & Edward Furman & X. Sheldon Lin, 2025. "Marginal expected shortfall: Systemic risk measurement under dependence uncertainty," Papers 2504.19953, arXiv.org.
    18. Jianfa Cong & Ken Seng Tan, 2016. "Optimal VaR-based risk management with reinsurance," Annals of Operations Research, Springer, vol. 237(1), pages 177-202, February.
    19. Denuit, Michel & Hieber, Peter & Robert, Christian Y., 2021. "Mortality credits within large survivor funds," LIDAM Discussion Papers ISBA 2021038, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    20. Nam, Hee Seok & Tang, Qihe & Yang, Fan, 2011. "Characterization of upper comonotonicity via tail convex order," Insurance: Mathematics and Economics, Elsevier, vol. 48(3), pages 368-373, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:42:y:2008:i:1:p:147-153. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.