IDEAS home Printed from https://ideas.repec.org/a/eee/infome/v9y2015i1p1-15.html

Tracing database usage: Detecting main paths in database link networks

Author

Listed:
  • Yu, Qi
  • Ding, Ying
  • Song, Min
  • Song, Sungjeon
  • Liu, Jianhua
  • Zhang, Bin

Abstract

This paper presents a database link network to measure the impact of databases on biological research. To this end, we used the 20,861 full-text articles from PubMed Central in the field of Bioinformatics. We then extracted databases from the methodology sections of these articles and their references. The list of databases was built with The 2013 Nucleic Acids Research Molecular Biology Database Collection (available online), which includes 1512 databases. The database link network was constructed from sets of pairs of databases mentioned in the methodology sections of full-text PubMed Central articles. The edges of the database link network represent the link relationships between two databases. The weight of each edge is determined either by the link frequency of the two databases (i.e., in the link-weighted database link network) or the topic similarity between two databases (i.e., in the similarity-weighted database link network). With the database link network, we analyzed the topological structure and main paths of the database link network to trace the usage, connection, and evolution of databases. We also conducted content analysis by comparing content similarities among the papers citing databases.

Suggested Citation

  • Yu, Qi & Ding, Ying & Song, Min & Song, Sungjeon & Liu, Jianhua & Zhang, Bin, 2015. "Tracing database usage: Detecting main paths in database link networks," Journal of Informetrics, Elsevier, vol. 9(1), pages 1-15.
  • Handle: RePEc:eee:infome:v:9:y:2015:i:1:p:1-15
    DOI: 10.1016/j.joi.2014.10.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1751157714000947
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.joi.2014.10.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Hong Huang & James Andrews & Jiang Tang, 2012. "Citation characterization and impact normalization in bioinformatics journals," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 63(3), pages 490-497, March.
    2. C.M. Calero Medina & T.N. Leeuwen, 2012. "Seed journal citation network maps: A method based on network theory," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 63(6), pages 1226-1234, June.
    3. Chang-Ping Hu & Ji-Ming Hu & Sheng-Li Deng & Yong Liu, 2013. "A co-word analysis of library and information science in China," Scientometrics, Springer;Akadémiai Kiadó, vol. 97(2), pages 369-382, November.
    4. C.M. Calero Medina & T.N. van Leeuwen, 2012. "Seed journal citation network maps: A method based on network theory," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 63(6), pages 1226-1234, June.
    5. Karen E. Pettigrew & Lynne (E.F.) McKechnie, 2001. "The use of theory in information science research," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 52(1), pages 62-73.
    6. Hong Huang & James Andrews & Jiang Tang, 2012. "Citation characterization and impact normalization in bioinformatics journals," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 63(3), pages 490-497, March.
    7. Louis Y. Y. Lu & John S. Liu, 2013. "An innovative approach to identify the knowledge diffusion path: the case of resource-based theory," Scientometrics, Springer;Akadémiai Kiadó, vol. 94(1), pages 225-246, January.
    8. Vieira, E.S. & Gomes, J.A.N.F., 2010. "A research impact indicator for institutions," Journal of Informetrics, Elsevier, vol. 4(4), pages 581-590.
    9. Ding, Ying, 2011. "Scientific collaboration and endorsement: Network analysis of coauthorship and citation networks," Journal of Informetrics, Elsevier, vol. 5(1), pages 187-203.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu, Dejian & Pan, Tianxing, 2021. "Tracing the main path of interdisciplinary research considering citation preference: A case from blockchain domain," Journal of Informetrics, Elsevier, vol. 15(2).
    2. Ning Yang & Zhiqiang Zhang & Feihu Huang, 2023. "A study of BERT-based methods for formal citation identification of scientific data," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(11), pages 5865-5881, November.
    3. Pan, Xuelian & Yan, Erjia & Cui, Ming & Hua, Weina, 2018. "Examining the usage, citation, and diffusion patterns of bibliometric mapping software: A comparative study of three tools," Journal of Informetrics, Elsevier, vol. 12(2), pages 481-493.
    4. Shiyun Wang & Jin Mao & Yujie Cao & Gang Li, 2022. "Integrated knowledge content in an interdisciplinary field: identification, classification, and application," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(11), pages 6581-6614, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mingyang Wang & Zhenyu Wang & Guangsheng Chen, 2019. "Which can better predict the future success of articles? Bibliometric indices or alternative metrics," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(3), pages 1575-1595, June.
    2. Andrea Moretta Tartaglione & Ylenia Cavacece & Giuseppe Russo & Giuseppe Granata, 2019. "A Systematic Mapping Study on Customer Loyalty and Brand Management," Administrative Sciences, MDPI, vol. 9(1), pages 1-21, January.
    3. Tahamtan, Iman & Bornmann, Lutz, 2018. "Core elements in the process of citing publications: Conceptual overview of the literature," Journal of Informetrics, Elsevier, vol. 12(1), pages 203-216.
    4. Hakyeon Lee, 2015. "Uncovering the multidisciplinary nature of technology management: journal citation network analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 102(1), pages 51-75, January.
    5. Min Song & Go Eun Heo & Su Yeon Kim, 2014. "Analyzing topic evolution in bioinformatics: investigation of dynamics of the field with conference data in DBLP," Scientometrics, Springer;Akadémiai Kiadó, vol. 101(1), pages 397-428, October.
    6. Zhenyu Gou & Fan Meng & Zaida Chinchilla-Rodríguez & Yi Bu, 2022. "Encoding the citation life-cycle: the operationalization of a literature-aging conceptual model," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(8), pages 5027-5052, August.
    7. Guoliang Lyu & Ganwei Shi, 2019. "On an approach to boosting a journal’s citation potential," Scientometrics, Springer;Akadémiai Kiadó, vol. 120(3), pages 1387-1409, September.
    8. Jia-Yen Huang & Rong-Chang Chen, 2019. "Exploring the intellectual structure of cloud patents using non-exhaustive overlaps," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(2), pages 739-769, November.
    9. Inchae Park & Keeeun Lee & Byungun Yoon, 2015. "Exploring Promising Research Frontiers Based on Knowledge Maps in the Solar Cell Technology Field," Sustainability, MDPI, vol. 7(10), pages 1-30, October.
    10. Iman Tahamtan & Askar Safipour Afshar & Khadijeh Ahamdzadeh, 2016. "Factors affecting number of citations: a comprehensive review of the literature," Scientometrics, Springer;Akadémiai Kiadó, vol. 107(3), pages 1195-1225, June.
    11. Meen Chul Kim & Yoo Kyung Jeong & Min Song, 2014. "Investigating the integrated landscape of the intellectual topology of bioinformatics," Scientometrics, Springer;Akadémiai Kiadó, vol. 101(1), pages 309-335, October.
    12. Dirce Maria Santin & Samile Andrea De Souza Vanz & Sonia Elisa Caregnato, 2016. "Internationality of Publications, Co-Authorship, References and Citations in Brazilian Evolutionary Biology," Publications, MDPI, vol. 4(1), pages 1-13, February.
    13. Campanario, Juan Miguel, 2015. "Providing impact: The distribution of JCR journals according to references they contribute to the 2-year and 5-year journal impact factors," Journal of Informetrics, Elsevier, vol. 9(2), pages 398-407.
    14. Ai-Yuan Liu & Shi-Ying Li & Yu-Qing Guo, 2014. "Characteristics of research on bioinformatics in China assessed with Science Citation Index Expanded," Scientometrics, Springer;Akadémiai Kiadó, vol. 99(2), pages 371-391, May.
    15. María Pinto & Rosaura Fernández-Pascual & David Caballero-Mariscal & Dora Sales, 2020. "Information literacy trends in higher education (2006–2019): visualizing the emerging field of mobile information literacy," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(2), pages 1479-1510, August.
    16. Yi Bu & Binglu Wang & Win-bin Huang & Shangkun Che & Yong Huang, 2018. "Using the appearance of citations in full text on author co-citation analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(1), pages 275-289, July.
    17. Maxim Kotsemir & Tatiana Kuznetsova & Elena Nasybulina & Anna Pikalova, 2015. "Identifying Directions for Russia’s Science and Technology Cooperation," Foresight-Russia Форсайт, CyberLeninka;Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет «Высшая школа экономики», vol. 9(4 (eng)), pages 54-72.
    18. Cheng, Yu & Huang, Lucheng & Ramlogan, Ronnie & Li, Xin, 2017. "Forecasting of potential impacts of disruptive technology in promising technological areas: Elaborating the SIRS epidemic model in RFID technology," Technological Forecasting and Social Change, Elsevier, vol. 117(C), pages 170-183.
    19. Jakub Rybacki & Dobromił Serwa, 2021. "What Makes a Successful Scientist in a Central Bank? Evidence From the RePEc Database," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 13(3), pages 331-357, September.
    20. Hao Wang & Sanhong Deng & Xinning Su, 2016. "A study on construction and analysis of discipline knowledge structure of Chinese LIS based on CSSCI," Scientometrics, Springer;Akadémiai Kiadó, vol. 109(3), pages 1725-1759, December.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:infome:v:9:y:2015:i:1:p:1-15. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/joi .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.