IDEAS home Printed from https://ideas.repec.org/a/eee/infome/v13y2019i3p817-829.html
   My bibliography  Save this article

Analyzing linguistic complexity and scientific impact

Author

Listed:
  • Lu, Chao
  • Bu, Yi
  • Dong, Xianlei
  • Wang, Jie
  • Ding, Ying
  • Larivière, Vincent
  • Sugimoto, Cassidy R.
  • Paul, Logan
  • Zhang, Chengzhi

Abstract

The number of publications and the number of citations received have become the most common indicators of scholarly success. In this context, scientific writing increasingly plays an important role in scholars’ scientific careers. To understand the relationship between scientific writing and scientific impact, this paper selected 12 variables of linguistic complexity as a proxy for depicting scientific writing. We then analyzed these features from 36,400 full-text Biology articles and 1,797 full-text Psychology articles. These features were compared to the scientific impact of articles, grouped into high, medium, and low categories. The results suggested no practical significant relationship between linguistic complexity and citation strata in either discipline. This suggests that textual complexity plays little role in scientific impact in our data sets.

Suggested Citation

  • Lu, Chao & Bu, Yi & Dong, Xianlei & Wang, Jie & Ding, Ying & Larivière, Vincent & Sugimoto, Cassidy R. & Paul, Logan & Zhang, Chengzhi, 2019. "Analyzing linguistic complexity and scientific impact," Journal of Informetrics, Elsevier, vol. 13(3), pages 817-829.
  • Handle: RePEc:eee:infome:v:13:y:2019:i:3:p:817-829
    DOI: 10.1016/j.joi.2019.07.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S175115771830227X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Natsuo Onodera & Fuyuki Yoshikane, 2015. "Factors affecting citation rates of research articles," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 66(4), pages 739-764, April.
    2. Ding, Ying & Liu, Xiaozhong & Guo, Chun & Cronin, Blaise, 2013. "The distribution of references across texts: Some implications for citation analysis," Journal of Informetrics, Elsevier, vol. 7(3), pages 583-592.
    3. Schneider, Jesper W., 2013. "Caveats for using statistical significance tests in research assessments," Journal of Informetrics, Elsevier, vol. 7(1), pages 50-62.
    4. Li Tang & Philip Shapira & Jan Youtie, 2015. "Is there a clubbing effect underlying Chinese research citation Increases?," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 66(9), pages 1923-1932, September.
    5. Vincent Larivière & Yves Gingras & Cassidy R. Sugimoto & Andrew Tsou, 2015. "Team size matters: Collaboration and scientific impact since 1900," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 66(7), pages 1323-1332, July.
    6. Xiaojun Wan & Fang Liu, 2014. "WL-index: Leveraging citation mention number to quantify an individual's scientific impact," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 65(12), pages 2509-2517, December.
    7. Si Shen & Ronald Rousseau & Dongbo Wang & Danhao Zhu & Huoyu Liu & Ruilun Liu, 2015. "Editorial delay and its relation to subsequent citations: the journals Nature, Science and Cell," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(3), pages 1867-1873, December.
    8. Vincent Larivière & Yves Gingras, 2010. "The impact factor's Matthew Effect: A natural experiment in bibliometrics," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 61(2), pages 424-427, February.
    9. Chenwei Zhang & Yi Bu & Ying Ding & Jian Xu, 2018. "Understanding scientific collaboration: Homophily, transitivity, and preferential attachment," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 69(1), pages 72-86, January.
    10. Ying Ding & Guo Zhang & Tamy Chambers & Min Song & Xiaolong Wang & Chengxiang Zhai, 2014. "Content-based citation analysis: The next generation of citation analysis," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 65(9), pages 1820-1833, September.
    11. Uddin, Shahadat & Khan, Arif, 2016. "The impact of author-selected keywords on citation counts," Journal of Informetrics, Elsevier, vol. 10(4), pages 1166-1177.
    12. Vincent Larivière & Yves Gingras, 2010. "The impact factor's Matthew Effect: A natural experiment in bibliometrics," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 61(2), pages 424-427, February.
    13. Kathy McKeown & Hal Daume III & Snigdha Chaturvedi & John Paparrizos & Kapil Thadani & Pablo Barrio & Or Biran & Suvarna Bothe & Michael Collins & Kenneth R. Fleischmann & Luis Gravano & Rahul Jha & B, 2016. "Predicting the impact of scientific concepts using full-text features," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 67(11), pages 2684-2696, November.
    14. Bradford Demarest & Cassidy R. Sugimoto, 2015. "Argue, observe, assess: Measuring disciplinary identities and differences through socio-epistemic discourse," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 66(7), pages 1374-1387, July.
    15. Didegah, Fereshteh & Thelwall, Mike, 2013. "Which factors help authors produce the highest impact research? Collaboration, journal and document properties," Journal of Informetrics, Elsevier, vol. 7(4), pages 861-873.
    16. Chao Lu & Yi Bu & Jie Wang & Ying Ding & Vetle Torvik & Matthew Schnaars & Chengzhi Zhang, 2019. "Examining scientific writing styles from the perspective of linguistic complexity," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 70(5), pages 462-475, May.
    17. ., 2017. "Standing on the shoulders of giants," Chapters, in: Endogenous Innovation, chapter 1, pages 3-24, Edward Elgar Publishing.
    18. Guillaume Cabanac & Gilles Hubert & James Hartley, 2014. "Solo versus collaborative writing: Discrepancies in the use of tables and graphs in academic articles," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 65(4), pages 812-820, April.
    19. Nick Haslam & Lauren Ban & Leah Kaufmann & Stephen Loughnan & Kim Peters & Jennifer Whelan & Sam Wilson, 2008. "What makes an article influential? Predicting impact in social and personality psychology," Scientometrics, Springer;Akadémiai Kiadó, vol. 76(1), pages 169-185, July.
    20. Amjad, Tehmina & Ding, Ying & Xu, Jian & Zhang, Chenwei & Daud, Ali & Tang, Jie & Song, Min, 2017. "Standing on the shoulders of giants," Journal of Informetrics, Elsevier, vol. 11(1), pages 307-323.
    21. Waltman, Ludo, 2016. "A review of the literature on citation impact indicators," Journal of Informetrics, Elsevier, vol. 10(2), pages 365-391.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kun Sun & Haitao Liu & Wenxin Xiong, 2021. "The evolutionary pattern of language in scientific writings: A case study of Philosophical Transactions of Royal Society (1665–1869)," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(2), pages 1695-1724, February.
    2. Bikun Chen & Dannan Deng & Zhouyan Zhong & Chengzhi Zhang, 2020. "Exploring linguistic characteristics of highly browsed and downloaded academic articles," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(3), pages 1769-1790, March.
    3. Diego Marino Fages, 2020. "Write better, publish better," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(3), pages 1671-1681, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiomara S. Q. Chacon & Thiago C. Silva & Diego R. Amancio, 2020. "Comparing the impact of subfields in scientific journals," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(1), pages 625-639, October.
    2. Mingyang Wang & Shi Li & Guangsheng Chen, 2017. "Detecting latent referential articles based on their vitality performance in the latest 2 years," Scientometrics, Springer;Akadémiai Kiadó, vol. 112(3), pages 1557-1571, September.
    3. Chao Lu & Ying Ding & Chengzhi Zhang, 2017. "Understanding the impact change of a highly cited article: a content-based citation analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 112(2), pages 927-945, August.
    4. Dell'Anno, Roberto & Caferra, Rocco & Morone, Andrea, 2020. "A “Trojan Horse” in the peer-review process of fee-charging economic journals," Journal of Informetrics, Elsevier, vol. 14(3).
    5. Lanu Kim & Jason H. Portenoy & Jevin D. West & Katherine W. Stovel, 2020. "Scientific journals still matter in the era of academic search engines and preprint archives," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 71(10), pages 1218-1226, October.
    6. Kun Sun & Haitao Liu & Wenxin Xiong, 2021. "The evolutionary pattern of language in scientific writings: A case study of Philosophical Transactions of Royal Society (1665–1869)," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(2), pages 1695-1724, February.
    7. Hamid R. Jamali & Majid Nabavi & Saeid Asadi, 2018. "How video articles are cited, the case of JoVE: Journal of Visualized Experiments," Scientometrics, Springer;Akadémiai Kiadó, vol. 117(3), pages 1821-1839, December.
    8. Bornmann, Lutz & Haunschild, Robin & Mutz, Rüdiger, 2020. "Should citations be field-normalized in evaluative bibliometrics? An empirical analysis based on propensity score matching," Journal of Informetrics, Elsevier, vol. 14(4).
    9. CholMyong Pak & Guang Yu & Weibin Wang, 2018. "A study on the citation situation within the citing paper: citation distribution of references according to mention frequency," Scientometrics, Springer;Akadémiai Kiadó, vol. 114(3), pages 905-918, March.
    10. Waltman, Ludo, 2016. "A review of the literature on citation impact indicators," Journal of Informetrics, Elsevier, vol. 10(2), pages 365-391.
    11. Jiang, Xiaorui & Zhuge, Hai, 2019. "Forward search path count as an alternative indirect citation impact indicator," Journal of Informetrics, Elsevier, vol. 13(4).
    12. Bikun Chen & Dannan Deng & Zhouyan Zhong & Chengzhi Zhang, 2020. "Exploring linguistic characteristics of highly browsed and downloaded academic articles," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(3), pages 1769-1790, March.
    13. Weibin Wang & Zheng Wang & Tian Yu & CholMyong Pak & Guang Yu, 2020. "Research on citation mention times and contributions using a neural network," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(3), pages 2383-2400, December.
    14. Copiello, Sergio, 2019. "Peer and neighborhood effects: Citation analysis using a spatial autoregressive model and pseudo-spatial data," Journal of Informetrics, Elsevier, vol. 13(1), pages 238-254.
    15. Guoqiang Liang & Haiyan Hou & Xiaodan Lou & Zhigang Hu, 2019. "Qualifying threshold of “take-off” stage for successfully disseminated creative ideas," Scientometrics, Springer;Akadémiai Kiadó, vol. 120(3), pages 1193-1208, September.
    16. Abdelghani Maddi & Yves Gingras, 2020. "Gender diversity in research teams and citation impact in Economics and Management," Papers 2011.14823, arXiv.org.
    17. Minxian Zheng & Kuangji Zhao & Shikui Zhao & Yantong Zhang, 2020. "Effecting variables of journal’s ranking in forestry field," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(1), pages 135-151, October.
    18. Wang, Wei & Ren, Jing & Alrashoud, Mubarak & Xia, Feng & Mao, Mengyi & Tolba, Amr, 2020. "Early-stage reciprocity in sustainable scientific collaboration," Journal of Informetrics, Elsevier, vol. 14(3).
    19. Zahedi, Zohreh & Haustein, Stefanie, 2018. "On the relationships between bibliographic characteristics of scientific documents and citation and Mendeley readership counts: A large-scale analysis of Web of Science publications," Journal of Informetrics, Elsevier, vol. 12(1), pages 191-202.
    20. Osório, António (António Miguel), 2019. "The value and credits of n-authors publications," Working Papers 2072/376026, Universitat Rovira i Virgili, Department of Economics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:infome:v:13:y:2019:i:3:p:817-829. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Nithya Sathishkumar). General contact details of provider: http://www.elsevier.com/locate/joi .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.