IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v83y2015icp104-114.html
   My bibliography  Save this article

Air-cooled gas turbine cycles – Part 1: An analytical method for the preliminary assessment of blade cooling flow rates

Author

Listed:
  • Sciubba, Enrico

Abstract

It is well known that, for a given compressor technology, gas turbine efficiency increases with the turbine inlet temperature (TIT): both modern aeronautical and land-based gas turbines operate at very high temperatures (1500–2000K) –and correspondingly high pressure ratios. As the TIT increases, the heat transferred from the expanding gas to the turbine blade also increases, and the need to extend the operational life make it necessary to adopt internal air cooling to reduce blade creep, oxidation and low-cycle fatigue. The cooling medium is usually air extracted from the high-pressure compressor stages, and since this extraction decreases the thermal efficiency and power output of the engine, it is important to bleed the minimum amount of coolant to attain a prescribed maximum material temperature in the blade with the maximum possible uniformity (lower thermal stresses): thence the need to properly model the cooling system for a given turbine blade geometry under realistic engine operating conditions. In the preliminary design of the first statoric and rotoric blading, it is essential for designers to rely on simple models that often neglect the small scales effects on the external flows and also by force adopt a much simplified treatment of the internal ones, and as a result attain a substantially lower degree of approximation than that offered by more complex and expensive numerical simulations. The goal in the design of a lumped model is therefore to make it both sufficiently general and accurate to analyze blade shapes and cooling channels structures that can be further refined by means of more accurate, but also more computationally intensive, models.

Suggested Citation

  • Sciubba, Enrico, 2015. "Air-cooled gas turbine cycles – Part 1: An analytical method for the preliminary assessment of blade cooling flow rates," Energy, Elsevier, vol. 83(C), pages 104-114.
  • Handle: RePEc:eee:energy:v:83:y:2015:i:c:p:104-114
    DOI: 10.1016/j.energy.2015.01.107
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544215001450
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.01.107?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kim, Kyung Min & Moon, Hokyu & Park, Jun Su & Cho, Hyung Hee, 2014. "Optimal design of impinging jets in an impingement/effusion cooling system," Energy, Elsevier, vol. 66(C), pages 839-848.
    2. Park, Jun Su & Lee, Dong Hyun & Rhee, Dong-Ho & Kang, Shin Hyung & Cho, Hyung Hee, 2014. "Heat transfer and film cooling effectiveness on the squealer tip of a turbine blade," Energy, Elsevier, vol. 72(C), pages 331-343.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gu, Chun-wei & Wang, Hao & Ji, Xing-xing & Li, Xue-song, 2016. "Development and application of a thermodynamic-cycle performance analysis method of a three-shaft gas turbine," Energy, Elsevier, vol. 112(C), pages 307-321.
    2. Moon, Seong Won & Kwon, Hyun Min & Kim, Tong Seop & Kang, Do Won & Sohn, Jeong Lak, 2018. "A novel coolant cooling method for enhancing the performance of the gas turbine combined cycle," Energy, Elsevier, vol. 160(C), pages 625-634.
    3. Salpingidou, Christina & Tsakmakidou, Dimitra & Vlahostergios, Zinon & Misirlis, Dimitrios & Flouros, Michael & Yakinthos, Kyros, 2018. "Analysis of turbine blade cooling effect on recuperative gas turbines cycles performance," Energy, Elsevier, vol. 164(C), pages 1271-1285.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rulik, Sebastian & Wróblewski, Włodzimierz & Nowak, Grzegorz & Szwedowicz, Jarosław, 2015. "Heat transfer intensification using acoustic waves in a cavity," Energy, Elsevier, vol. 87(C), pages 21-30.
    2. Peng Guan & Yan-Ting Ai & Cheng-Wei Fei, 2019. "An Enhanced Flow-Thermo-Structural Modeling and Validation for the Integrated Analysis of a Film Cooling Nozzle Guide Vane," Energies, MDPI, vol. 12(14), pages 1-20, July.
    3. Zou, Zhengping & Shao, Fei & Li, Yiran & Zhang, Weihao & Berglund, Albin, 2017. "Dominant flow structure in the squealer tip gap and its impact on turbine aerodynamic performance," Energy, Elsevier, vol. 138(C), pages 167-184.
    4. Lioua Kolsi & Fatih Selimefendigil & Kaouther Ghachem & Talal Alqahtani & Salem Algarni, 2022. "Multiple Impinging Jet Cooling of a Wavy Surface by Using Double Porous Fins under Non-Uniform Magnetic Field," Mathematics, MDPI, vol. 10(4), pages 1-20, February.
    5. Li, Haiwang & Wang, Meng & You, Ruquan & Liu, Song, 2023. "Thermal radiation correction formula of the scaling criteria for film cooling of turbine blades," Energy, Elsevier, vol. 282(C).
    6. Chung, Heeyoon & Sohn, Ho-Seong & Park, Jun Su & Kim, Kyung Min & Cho, Hyung Hee, 2017. "Thermo-structural analysis of cracks on gas turbine vane segment having multiple airfoils," Energy, Elsevier, vol. 118(C), pages 1275-1285.
    7. Łapka, Piotr & Ciepliński, Adrian & Rusowicz, Artur, 2020. "Numerical model and analysis of heat transfer during microjets array impingement," Energy, Elsevier, vol. 203(C).
    8. Tariq, Rasikh & Xamán, J. & Bassam, A. & Ricalde, Luis J. & Soberanis, M.A. Escalante, 2020. "Multidimensional assessment of a photovoltaic air collector integrated phase changing material considering Mexican climatic conditions," Energy, Elsevier, vol. 209(C).
    9. Ye, Xuemin & Li, Pengmin & Li, Chunxi & Ding, Xueliang, 2015. "Numerical investigation of blade tip grooving effect on performance and dynamics of an axial flow fan," Energy, Elsevier, vol. 82(C), pages 556-569.
    10. Rodrigo J. F. Neno & Beatriz S. Dias & Jorge E. P. Navalho & José C. F. Pereira, 2022. "Numerical Simulation of Heat Removal from a Window Slab Partition of a Radiative Coil Coating Oven," Energies, MDPI, vol. 15(6), pages 1-21, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:83:y:2015:i:c:p:104-114. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.