IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v164y2018icp1271-1285.html
   My bibliography  Save this article

Analysis of turbine blade cooling effect on recuperative gas turbines cycles performance

Author

Listed:
  • Salpingidou, Christina
  • Tsakmakidou, Dimitra
  • Vlahostergios, Zinon
  • Misirlis, Dimitrios
  • Flouros, Michael
  • Yakinthos, Kyros

Abstract

Energy saving technologies are of prior importance to European environmental legislation. Gas turbines is a widely used technology, but is also considered a technology of important environmental footprint. Recuperation technology can be applied in gas turbines applications in order to achieve higher efficiency and reduced fuel consumption. In this work three different thermodynamic cycles are under investigation: the conventional recuperative cycle, the alternative and the SHR. All of these cycles have one or more heat exchangers integrated at different positions inside the gas turbine. In recuperative cycles the turbine inlet temperature is usually high, in order to achieve a beneficial temperature difference for recuperation. However, as this temperature increases the demanded mass flow for cooling the turbines gets higher. In order to obtain realistic results of high accuracy, the coolant mass flow cannot be neglected and must be carefully considered. In this paper, the required coolant mass flow is calculated for each cycle and for an extended range of operational conditions. The efficiency penalty due to the extracted air from the compressor is also calculated and presented. Different materials technology level is taken into account and therefore three allowable metal temperatures are considered for the calculations. The demanded coolant mass flow is calculated based on Young and Wilcock (2002). In order to underline the importance of taking into account the demanded coolant flow, an analysis of the performance of a helicopter engine is presented. The results show that both the thermal efficiency and the specific fuel consumption are affected when turbine blade cooling is taken into account.

Suggested Citation

  • Salpingidou, Christina & Tsakmakidou, Dimitra & Vlahostergios, Zinon & Misirlis, Dimitrios & Flouros, Michael & Yakinthos, Kyros, 2018. "Analysis of turbine blade cooling effect on recuperative gas turbines cycles performance," Energy, Elsevier, vol. 164(C), pages 1271-1285.
  • Handle: RePEc:eee:energy:v:164:y:2018:i:c:p:1271-1285
    DOI: 10.1016/j.energy.2018.08.204
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218317407
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.08.204?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sciubba, Enrico, 2015. "Air-cooled gas turbine cycles – Part 1: An analytical method for the preliminary assessment of blade cooling flow rates," Energy, Elsevier, vol. 83(C), pages 104-114.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gu, Chun-wei & Wang, Hao & Ji, Xing-xing & Li, Xue-song, 2016. "Development and application of a thermodynamic-cycle performance analysis method of a three-shaft gas turbine," Energy, Elsevier, vol. 112(C), pages 307-321.
    2. Moon, Seong Won & Kwon, Hyun Min & Kim, Tong Seop & Kang, Do Won & Sohn, Jeong Lak, 2018. "A novel coolant cooling method for enhancing the performance of the gas turbine combined cycle," Energy, Elsevier, vol. 160(C), pages 625-634.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:164:y:2018:i:c:p:1271-1285. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.