IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v80y2015icp474-485.html
   My bibliography  Save this article

Thermoeconomic optimization of gas turbine cogeneration plants

Author

Listed:
  • Karaali, Rabi
  • Öztürk, İlhan Tekin

Abstract

In this study, a novel thermoeconomic optimization method that is simple and efficient, for real complex cycles is introduced. First, a thermoeconomic analysis method that is called non-linear simplex direct search method is improved for the purposes of this study. The objective of this paper is to apply this method to four cogeneration cycles that are simple cycle, inlet air cooling cycle, air preheated and air-fuel preheated cycles for analyzing and optimizing. The four cycles are thermoeconomically optimized for constant power and steam mass (30 MW and 14 kg/s saturated steam flow rate at 2000 kPa), for constant power (30 MW) and for variable steam mass, and for variable power and steam mass by using the cost equation method and the effect of size on equipment method. The results obtained by the effect of size on equipment and by the cost equations methods are very different from each other. For the case of global optimization, the optimum electricity costs which also correspond to minimum are obtained as 0,0432 $/kWh for simple cycle, 0,0514 $/kWh for inlet air cooling cycle 0,0577 $/kWh for air preheated cycle and 0,058 $/kWh for air-fuel preheated cycle by using cost equations method.

Suggested Citation

  • Karaali, Rabi & Öztürk, İlhan Tekin, 2015. "Thermoeconomic optimization of gas turbine cogeneration plants," Energy, Elsevier, vol. 80(C), pages 474-485.
  • Handle: RePEc:eee:energy:v:80:y:2015:i:c:p:474-485
    DOI: 10.1016/j.energy.2014.12.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544214013619
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2014.12.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alvarado, S. & Gherardelli, C., 1994. "Exergoeconomic optimization of a cogeneration plant," Energy, Elsevier, vol. 19(12), pages 1225-1233.
    2. Valero, Antonio & Lozano, Miguel A. & Serra, Luis & Tsatsaronis, George & Pisa, Javier & Frangopoulos, Christos & von Spakovsky, Michael R., 1994. "CGAM problem: Definition and conventional solution," Energy, Elsevier, vol. 19(3), pages 279-286.
    3. Kim, Si-Moon & Oh†, Si-Doek & Kwon, Yong-Ho & Kwak, Ho-Young, 1998. "Exergoeconomic analysis of thermal systems," Energy, Elsevier, vol. 23(5), pages 393-406.
    4. Hua, B. & Chen, Q.L. & Wang, P., 1997. "A new exergoeconomic approach for analysis and optimization of energy systems," Energy, Elsevier, vol. 22(11), pages 1071-1078.
    5. Lazzaretto, Andrea & Toffolo, Andrea & Morandin, Matteo & von Spakovsky, Michael R., 2010. "Criteria for the decomposition of energy systems in local/global optimizations," Energy, Elsevier, vol. 35(2), pages 1157-1163.
    6. Kim, D.J., 2010. "A new thermoeconomic methodology for energy systems," Energy, Elsevier, vol. 35(1), pages 410-422.
    7. Lazzaretto, Andrea & Tsatsaronis, George, 2006. "SPECO: A systematic and general methodology for calculating efficiencies and costs in thermal systems," Energy, Elsevier, vol. 31(8), pages 1257-1289.
    8. von Spakovsky, Michael R., 1994. "Application of engineering functional analysis to the analysis and optimization of the CGAM problem," Energy, Elsevier, vol. 19(3), pages 343-364.
    9. Ahmadi, Pouria & Dincer, Ibrahim, 2010. "Exergoenvironmental analysis and optimization of a cogeneration plant system using Multimodal Genetic Algorithm (MGA)," Energy, Elsevier, vol. 35(12), pages 5161-5172.
    10. Agudelo, Andrés & Valero, Antonio & Torres, César, 2012. "Allocation of waste cost in thermoeconomic analysis," Energy, Elsevier, vol. 45(1), pages 634-643.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Espirito Santo, Denilson Boschiero do & Gallo, Waldyr Luiz Ribeiro, 2017. "Utilizing primary energy savings and exergy destruction to compare centralized thermal plants and cogeneration/trigeneration systems," Energy, Elsevier, vol. 120(C), pages 785-795.
    2. Cao, Tao & Hwang, Yunho & Radermacher, Reinhard, 2017. "Development of an optimization based design framework for microgrid energy systems," Energy, Elsevier, vol. 140(P1), pages 340-351.
    3. Taner, Tolga & Sivrioglu, Mecit, 2015. "Energy–exergy analysis and optimisation of a model sugar factory in Turkey," Energy, Elsevier, vol. 93(P1), pages 641-654.
    4. Sahu, Mithilesh Kumar & Sanjay,, 2017. "Thermoeconomic investigation of power utilities: Intercooled recuperated gas turbine cycle featuring cooled turbine blades," Energy, Elsevier, vol. 138(C), pages 490-499.
    5. Taner, Tolga & Sivrioglu, Mecit, 2017. "A techno-economic & cost analysis of a turbine power plant: A case study for sugar plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 722-730.
    6. Sahu, Mithilesh Kumar & Sanjay,, 2017. "Comparative exergoeconomic analysis of basic and reheat gas turbine with air film blade cooling," Energy, Elsevier, vol. 132(C), pages 160-170.
    7. Lee, Jae Hong & Kim, Tong Seop & Kim, Eui-hwan, 2017. "Prediction of power generation capacity of a gas turbine combined cycle cogeneration plant," Energy, Elsevier, vol. 124(C), pages 187-197.
    8. Kler, Alexander & Zakharov, Yuri, 2017. "Joint optimization of power plant cycle parameters and gas turbine flow path parameters with blade airfoils represented by cubic splines," Energy, Elsevier, vol. 137(C), pages 183-192.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abusoglu, Aysegul & Kanoglu, Mehmet, 2009. "Exergoeconomic analysis and optimization of combined heat and power production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2295-2308, December.
    2. Rosseto de Faria, Pedro & Aiolfi Barone, Marcelo & Guedes dos Santos, Rodrigo & Santos, José Joaquim C.S., 2023. "The environment as a thermoeconomic diagram device for the systematic and automatic waste and environmental cost internalization in thermal systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    3. Lamas, Wendell de Queiroz, 2013. "Fuzzy thermoeconomic optimisation applied to a small waste water treatment plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 214-219.
    4. Sahu, Mithilesh Kumar & Sanjay,, 2017. "Thermoeconomic investigation of power utilities: Intercooled recuperated gas turbine cycle featuring cooled turbine blades," Energy, Elsevier, vol. 138(C), pages 490-499.
    5. Kim, D.J., 2010. "A new thermoeconomic methodology for energy systems," Energy, Elsevier, vol. 35(1), pages 410-422.
    6. dos Santos, Rodrigo G. & de Faria, Pedro R. & Santos, José J.C.S. & da Silva, Julio A.M. & Flórez-Orrego, Daniel, 2016. "Thermoeconomic modeling for CO2 allocation in steam and gas turbine cogeneration systems," Energy, Elsevier, vol. 117(P2), pages 590-603.
    7. Sahu, Mithilesh Kumar & Sanjay,, 2017. "Comparative exergoeconomics of power utilities: Air-cooled gas turbine cycle and combined cycle configurations," Energy, Elsevier, vol. 139(C), pages 42-51.
    8. César Torres & Antonio Valero, 2021. "The Exergy Cost Theory Revisited," Energies, MDPI, vol. 14(6), pages 1-42, March.
    9. Sahu, Mithilesh Kumar & Sanjay,, 2016. "Investigation of the effect of air film blade cooling on thermoeconomics of gas turbine based power plant cycle," Energy, Elsevier, vol. 115(P1), pages 1320-1330.
    10. Bagdanavicius, Audrius & Jenkins, Nick & Hammond, Geoffrey P., 2012. "Assessment of community energy supply systems using energy, exergy and exergoeconomic analysis," Energy, Elsevier, vol. 45(1), pages 247-255.
    11. Valero, Antonio & Usón, Sergio & Torres, César & Valero, Alicia & Agudelo, Andrés & Costa, Jorge, 2013. "Thermoeconomic tools for the analysis of eco-industrial parks," Energy, Elsevier, vol. 62(C), pages 62-72.
    12. Ligang Wang & Zhiping Yang & Shivom Sharma & Alberto Mian & Tzu-En Lin & George Tsatsaronis & François Maréchal & Yongping Yang, 2018. "A Review of Evaluation, Optimization and Synthesis of Energy Systems: Methodology and Application to Thermal Power Plants," Energies, MDPI, vol. 12(1), pages 1-53, December.
    13. Khoshgoftar Manesh, M.H. & Navid, P. & Blanco Marigorta, A.M. & Amidpour, M. & Hamedi, M.H., 2013. "New procedure for optimal design and evaluation of cogeneration system based on advanced exergoeconomic and exergoenvironmental analyses," Energy, Elsevier, vol. 59(C), pages 314-333.
    14. Cardona, E. & Piacentino, A., 2006. "A new approach to exergoeconomic analysis and design of variable demand energy systems," Energy, Elsevier, vol. 31(4), pages 490-515.
    15. Haydargil, Derya & Abuşoğlu, Ayşegül, 2018. "A comparative thermoeconomic cost accounting analysis and evaluation of biogas engine-powered cogeneration," Energy, Elsevier, vol. 159(C), pages 97-114.
    16. Ahmadi, Pouria & Dincer, Ibrahim, 2010. "Exergoenvironmental analysis and optimization of a cogeneration plant system using Multimodal Genetic Algorithm (MGA)," Energy, Elsevier, vol. 35(12), pages 5161-5172.
    17. Uysal, Cuneyt & Keçebaş, Ali, 2021. "Advanced exergoeconomic analysis with using modified productive structure analysis: An application for a real gas turbine cycle," Energy, Elsevier, vol. 223(C).
    18. Zare, V. & Mahmoudi, S.M.S. & Yari, M. & Amidpour, M., 2012. "Thermoeconomic analysis and optimization of an ammonia–water power/cooling cogeneration cycle," Energy, Elsevier, vol. 47(1), pages 271-283.
    19. Bargos, Fabiano Fernandes & Lamas, Wendell de Queiróz & Bilato, Gabriel Adam, 2018. "Computational tools and operational research for optimal design of co-generation systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 507-516.
    20. Mohammadkhani, F. & Shokati, N. & Mahmoudi, S.M.S. & Yari, M. & Rosen, M.A., 2014. "Exergoeconomic assessment and parametric study of a Gas Turbine-Modular Helium Reactor combined with two Organic Rankine Cycles," Energy, Elsevier, vol. 65(C), pages 533-543.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:80:y:2015:i:c:p:474-485. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.