IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v35y2010i3p1425-1432.html
   My bibliography  Save this article

Wind power generation with a parawing on ships, a proposal

Author

Listed:
  • Kim, J.
  • Park, C.

Abstract

It is proposed that electric power can be generated from wind by pulling a ship. A parafoil pulls and tows a ship. Electrical power is generated by hydraulic turbines installed on the ship below the water line. The electric power generated is expended onboard to electrolyze water to produce hydrogen or methanol or to convert carbon dioxide into storable forms of liquid. This paper describes the principle of designing such a system, shows the general features of such a system, and describes in detail two example designs which produce 6 MW and 0.8 GW. It is shown that a fleet of such ships operating in two different regions of the sea can produce much more energy than the world needs.

Suggested Citation

  • Kim, J. & Park, C., 2010. "Wind power generation with a parawing on ships, a proposal," Energy, Elsevier, vol. 35(3), pages 1425-1432.
  • Handle: RePEc:eee:energy:v:35:y:2010:i:3:p:1425-1432
    DOI: 10.1016/j.energy.2009.11.027
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544209005167
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2009.11.027?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Goldstein, Leo, 2013. "Theoretical analysis of an airborne wind energy conversion system with a ground generator and fast motion transfer," Energy, Elsevier, vol. 55(C), pages 987-995.
    2. Tang, Ruoli & Wu, Zhou & Li, Xin, 2018. "Optimal operation of photovoltaic/battery/diesel/cold-ironing hybrid energy system for maritime application," Energy, Elsevier, vol. 162(C), pages 697-714.
    3. Inal, Omer Berkehan & Charpentier, Jean-Frédéric & Deniz, Cengiz, 2022. "Hybrid power and propulsion systems for ships: Current status and future challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    4. Pelz, P.F. & Holl, M. & Platzer, M., 2016. "Analytical method towards an optimal energetic and economical wind-energy converter," Energy, Elsevier, vol. 94(C), pages 344-351.
    5. Andrzej Łebkowski & Jakub Wnorowski, 2021. "A Comparative Analysis of Energy Consumption by Conventional and Anchor Based Dynamic Positioning of Ship," Energies, MDPI, vol. 14(3), pages 1-26, January.
    6. Pavković, D. & Hoić, M. & Deur, J. & Petrić, J., 2014. "Energy storage systems sizing study for a high-altitude wind energy application," Energy, Elsevier, vol. 76(C), pages 91-103.
    7. Holl, Mario & Pelz, Peter F., 2016. "Multi-pole system analysis (MPSA) – A systematic method towards techno-economic optimal system design," Applied Energy, Elsevier, vol. 169(C), pages 937-949.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:35:y:2010:i:3:p:1425-1432. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.