IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v328y2025ics0360544225021930.html
   My bibliography  Save this article

Condensation characteristics of liquid ammonia direct injection under diesel engine-like conditions

Author

Listed:
  • Yi, Ping
  • Cong, Yujin
  • Fu, YunPeng
  • Li, Tie
  • Huang, Shuai
  • Chen, Run
  • Li, Shiyan
  • Zhou, Xinyi

Abstract

Ammonia has gained widespread attention in internal combustion engines as a promising hydrogen carrier. However, its large latent heat of evaporation leading to a severe cooling effect brings a challenge for direct utilization of its liquid injection. The present study aims to unravel the condensation features of liquid ammonia injection. First, an efficient Euler-Lagrange simulation framework coupled with a condensation model was established, and the simulation results were verified against experimental data. Then, extensive simulations of multi-hole liquid ammonia injections under various diesel engine-like conditions were conducted, and the results indicate that the proportion of condensation mass relative to its injection mass gradually increases with hole numbers. The condensation in spray transient period gathers at the nozzle exit primarily due to the large instantaneous evaporation rate. Therefore, smaller nozzles, hotter fuels, lower injection pressures and higher ambient temperatures tend to produce more condensation in the transient period. As the spray enters the quasi-steady period, the condensation region moves away from the nozzle exit and becomes widen, primarily depending on the long-term cooling effect, which is jointly affected by evaporation mass, heat transfer rate, and phase envelope. Accordingly, larger nozzles, higher injection pressures, and lower ambient temperatures can facilitate condensation. For the supercritical injection of ammonia, due to its fast phase transition, substantial condensation occurs at the nozzle exit, and its distribution is totally different from the normal evaporating spray. Finally, a characteristic isotherm, only increasing with ambient pressure, was proposed to qualitatively indicate the condensation penetration length for large-scale condensation.

Suggested Citation

  • Yi, Ping & Cong, Yujin & Fu, YunPeng & Li, Tie & Huang, Shuai & Chen, Run & Li, Shiyan & Zhou, Xinyi, 2025. "Condensation characteristics of liquid ammonia direct injection under diesel engine-like conditions," Energy, Elsevier, vol. 328(C).
  • Handle: RePEc:eee:energy:v:328:y:2025:i:c:s0360544225021930
    DOI: 10.1016/j.energy.2025.136551
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225021930
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.136551?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Lu, Zhen & Ye, Jianpeng & Gui, Yong & Lu, Tianlong & Shi, Lei & An, Yanzhao & Wang, Tianyou, 2023. "Numerical study of the compression ignition of ammonia in a two-stroke marine engine by using HTCGR strategy," Energy, Elsevier, vol. 276(C).
    2. Li, Shiyan & Liu, Sikai & Wang, Ning & Li, Tie & Chen, Run & Yi, Ping & Huang, Shuai & Zhou, Xinyi, 2025. "Atomization and evaporation characteristics of liquid ammonia spray under engine intake stroke conditions," Energy, Elsevier, vol. 316(C).
    3. Ding, Hongbing & Zhang, Yu & Dong, Yuanyuan & Wen, Chuang & Yang, Yan, 2023. "High-pressure supersonic carbon dioxide (CO2) separation benefiting carbon capture, utilisation and storage (CCUS) technology," Applied Energy, Elsevier, vol. 339(C).
    4. Zhang, Yanzhi & Xu, Leilei & Zhu, Yizi & Xu, Shijie & Bai, Xue-Song, 2023. "Numerical study on liquid ammonia direct injection spray characteristics under engine-relevant conditions," Applied Energy, Elsevier, vol. 334(C).
    5. Bian, Jiang & Guo, Dan & Li, Yuxuan & Cai, Weihua & Hua, Yihuai & Cao, Xuewen, 2022. "Homogeneous nucleation and condensation mechanism of methane gas: A molecular simulation perspective," Energy, Elsevier, vol. 249(C).
    6. Wang, Xiangang & Huang, Zuohua & Zhang, Wu & Kuti, Olawole Abiola & Nishida, Keiya, 2011. "Effects of ultra-high injection pressure and micro-hole nozzle on flame structure and soot formation of impinging diesel spray," Applied Energy, Elsevier, vol. 88(5), pages 1620-1628, May.
    7. Yapicioglu, Arda & Dincer, Ibrahim, 2019. "A review on clean ammonia as a potential fuel for power generators," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 96-108.
    8. Li, Shiyan & Wang, Ning & Li, Tie & Chen, Run & Yi, Ping & Huang, Shuai & Zhou, Xinyi, 2024. "Experimental investigation on liquid length of direct-injection ammonia spray under engine-like conditions," Energy, Elsevier, vol. 301(C).
    9. Ryu, Kyunghyun & Zacharakis-Jutz, George E. & Kong, Song-Charng, 2014. "Effects of gaseous ammonia direct injection on performance characteristics of a spark-ignition engine," Applied Energy, Elsevier, vol. 116(C), pages 206-215.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elbanna, Ahmed Mohammed & Cheng, Xiaobei, 2024. "The role of charge reactivity in ammonia/diesel dual fuel combustion in compression ignition engine," Energy, Elsevier, vol. 306(C).
    2. Cheng, Qiang & Muhammad, Akram & Kaario, Ossi & Ahmad, Zeeshan & Martti, Larmi, 2025. "Ammonia as a sustainable fuel: Review and novel strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 207(C).
    3. Shin, Jisoo & Park, Sungwook, 2024. "Numerical analysis and optimization of combustion and emissions in an ammonia-diesel dual-fuel engine using an ammonia direct injection strategy," Energy, Elsevier, vol. 289(C).
    4. Zhang, Hao & Lei, Nuo & Wang, Zhi, 2024. "Ammonia-hydrogen propulsion system for carbon-free heavy-duty vehicles," Applied Energy, Elsevier, vol. 369(C).
    5. Wang, Zhaoxi & Wang, Bingbing & Wang, Yue & Bian, Jiang & Hua, Yihuai & Li, Qian & Cai, Weihua, 2025. "Condensation processes of carbon dioxide in high-pressure methane gas: A microscopic study of the dynamic behavior of nucleation, dissolution, and crystallization," Energy, Elsevier, vol. 317(C).
    6. Nadimi, Ebrahim & Przybyła, Grzegorz & Løvås, Terese & Peczkis, Grzegorz & Adamczyk, Wojciech, 2023. "Experimental and numerical study on direct injection of liquid ammonia and its injection timing in an ammonia-biodiesel dual injection engine," Energy, Elsevier, vol. 284(C).
    7. Zhou, Xinyi & Li, Tie & Wang, Ning & Wu, Zehao & Cao, Jiale & Chen, Run & Huang, Shuai & Li, Shiyan, 2024. "Similarity of high-pressure direct-injection liquid ammonia spray for different-sized engines," Energy, Elsevier, vol. 310(C).
    8. Kumar, Laveet & Sleiti, Ahmad K., 2024. "Systematic review on ammonia as a sustainable fuel for combustion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
    9. Li, Shiyan & Liu, Sikai & Wang, Ning & Li, Tie & Chen, Run & Yi, Ping & Huang, Shuai & Zhou, Xinyi, 2025. "Atomization and evaporation characteristics of liquid ammonia spray under engine intake stroke conditions," Energy, Elsevier, vol. 316(C).
    10. Nie, Zexin & Huang, Yi & Lu, Ziwang & Tian, Guangyu & Liu, Xinhua, 2024. "Energy efficiency analysis of ammonia-fueled power systems for vehicles considering residual heat recovery," Energy, Elsevier, vol. 312(C).
    11. Chen, Lei & Hu, Yanwei & Yang, Kai & Yan, Xinqing & Yu, Shuai & Yu, Jianliang & Chen, Shaoyun, 2023. "Fracture process characteristic study during fracture propagation of a CO2 transport network distribution pipeline," Energy, Elsevier, vol. 283(C).
    12. Li, Jun & Huang, Hongyu & Kobayashi, Noriyuki & He, Zhaohong & Osaka, Yugo & Zeng, Tao, 2015. "Numerical study on effect of oxygen content in combustion air on ammonia combustion," Energy, Elsevier, vol. 93(P2), pages 2053-2068.
    13. Lee, Boreum & Park, Junhyung & Lee, Hyunjun & Byun, Manhee & Yoon, Chang Won & Lim, Hankwon, 2019. "Assessment of the economic potential: COx-free hydrogen production from renewables via ammonia decomposition for small-sized H2 refueling stations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    14. Wang, Jianxiao & An, Qi & Zhao, Yue & Pan, Guangsheng & Song, Jie & Hu, Qinran & Tan, Chin-Woo, 2023. "Role of electrolytic hydrogen in smart city decarbonization in China," Applied Energy, Elsevier, vol. 336(C).
    15. Wang, Qiang & Tang, Fei & Zhou, Zheng & Liu, Huan & Palacios, Adriana, 2017. "Flame height of axisymmetric gaseous fuel jets restricted by parallel sidewalls: Experiments and theoretical analysis," Applied Energy, Elsevier, vol. 208(C), pages 1519-1526.
    16. Huang, Weidi & Wu, Zhijun & Gao, Ya & Zhang, Lin, 2015. "Effect of shock waves on the evolution of high-pressure fuel jets," Applied Energy, Elsevier, vol. 159(C), pages 442-448.
    17. Ahmed, Shoaib & Li, Tie & Yi, Ping & Chen, Run, 2023. "Environmental impact assessment of green ammonia-powered very large tanker ship for decarbonized future shipping operations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    18. Liu, Shang & Lin, Zhelong & Zhang, Hao & Lei, Nuo & Qi, Yunliang & Wang, Zhi, 2023. "Impact of ammonia addition on knock resistance and combustion performance in a gasoline engine with high compression ratio," Energy, Elsevier, vol. 262(PA).
    19. Pachiannan, Tamilselvan & Zhong, Wenjun & Rajkumar, Sundararajan & He, Zhixia & Leng, Xianying & Wang, Qian, 2019. "A literature review of fuel effects on performance and emission characteristics of low-temperature combustion strategies," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    20. Yapicioglu, Arda & Dincer, Ibrahim, 2019. "A review on clean ammonia as a potential fuel for power generators," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 96-108.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:328:y:2025:i:c:s0360544225021930. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.