IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v324y2025ics0360544225016330.html
   My bibliography  Save this article

Numerical investigation of the hydrothermal performance in novel cooled panels with flow-guided pin fins and secondary channels for reusable launch vehicles

Author

Listed:
  • Zhang, T.Y.
  • Liu, H.Z.
  • Fei, Q.G.
  • Chen, Q.
  • Zhang, D.H.

Abstract

To enhance the performance of active thermal protection systems for reusable launch vehicles, a cooled panel (132 mm × 100 mm × 6 mm) with flow-guided pin fins and secondary channels (CP-FGFSC) is proposed, and streamlined ribs are introduced to reduce drag (CP-LDHFSC) in this study. The hydrothermal performance of cooled panels is numerically investigated and compared with the cooled panel featuring front triangle ribs and secondary channels (CP-FTRSC) at the Reynolds number (Re) from 84 to 670. It shows that, due to the enhanced fluid guidance and vortex suppression of flow-guided pin fins, the relative Nusselt number of CP-FGFSC is improved by up to 11.4 % compared with CP-FTRSC at Re = 670. The introduction of the LD-Haack curve significantly reduces flow resistance, resulting in the performance evaluation criterion (PEC) of 2.036 for CP-LDHFSC at Re = 670, which is a 7.4 % improvement compared to CP-FTRSC. After structural parameter optimization, the PEC of CP-LDHFSC can be improved to 2.15 at Re = 670 when relative rib width/length/position is 0.2/0.2/0.7 and relative secondary channel width is 0.75, representing a 5.6 % increase compared with the pre-optimized value. Sensitivity analysis reveals that the rib width and secondary channel width are critical parameters for structural design, with impacts on the comprehensive performance of 0.487 and 0.336, respectively.

Suggested Citation

  • Zhang, T.Y. & Liu, H.Z. & Fei, Q.G. & Chen, Q. & Zhang, D.H., 2025. "Numerical investigation of the hydrothermal performance in novel cooled panels with flow-guided pin fins and secondary channels for reusable launch vehicles," Energy, Elsevier, vol. 324(C).
  • Handle: RePEc:eee:energy:v:324:y:2025:i:c:s0360544225016330
    DOI: 10.1016/j.energy.2025.135991
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225016330
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.135991?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Li, Bingcheng & Yan, Hongye & He, Yuchen & Zhang, Zehan & Ling, Weihao & Zeng, Min & Wang, Yanfeng & Wang, Qiuwang, 2024. "Investigation of the insoluble impurities' impact on flow boiling heat transfer in aluminum microchannel heat exchangers," Energy, Elsevier, vol. 311(C).
    2. Pinar Eneren & Yunus Tansu Aksoy & Maria Rosaria Vetrano, 2023. "Practical Challenges in Nanofluid Convective Heat Transfer Inside Silicon Microchannels," Energies, MDPI, vol. 16(23), pages 1-18, December.
    3. Wang, Jin & Yu, Kai & Ye, Mingzheng & Wang, Enyu & Wang, Wei & Sundén, Bengt, 2022. "Effects of pin fins and vortex generators on thermal performance in a microchannel with Al2O3 nanofluids," Energy, Elsevier, vol. 239(PE).
    4. Zhou, Xingyu & Zhang, Silong & Zuo, Jingying & Wei, Jianfei & Guo, Yujie & Bao, Wen, 2024. "Study on combined thermal protection scheme integrating supercritical CO2 regenerative cooling and fuel film cooling used for scramjet engines," Energy, Elsevier, vol. 312(C).
    5. Ye, Mingzheng & Du, Jianqiang & Wang, Jin & Chen, Lei & Varbanov, Petar Sabev & Klemeš, Jiří Jaromír, 2022. "Investigation on thermal performance of nanofluids in a microchannel with fan-shaped cavities and oval pin fins," Energy, Elsevier, vol. 260(C).
    6. Ağbulut, Ümit & Sarıdemir, Suat & Rajak, Upendra & Polat, Fikret & Afzal, Asif & Verma, Tikendra Nath, 2021. "Effects of high-dosage copper oxide nanoparticles addition in diesel fuel on engine characteristics," Energy, Elsevier, vol. 229(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yifan Li & Congzhe Zhu & Xiuming Li & Bin Yang, 2025. "A Review of Non-Uniform Load Distribution and Solutions in Data Centers: Micro-Scale Liquid Cooling and Large-Scale Air Cooling," Energies, MDPI, vol. 18(1), pages 1-22, January.
    2. Ye, Mingzheng & Du, Jianqiang & Wang, Jin & Chen, Lei & Varbanov, Petar Sabev & Klemeš, Jiří Jaromír, 2022. "Investigation on thermal performance of nanofluids in a microchannel with fan-shaped cavities and oval pin fins," Energy, Elsevier, vol. 260(C).
    3. Jemit Adhyaru & Mohan Uma & Vedagiri Praveena & Prabhu Sethuramalingam, 2024. "Optimization of Thermal and Pressure Drop Performance in Circular Pin Fin Heat Sinks Using the TOPSIS Method," Energies, MDPI, vol. 17(24), pages 1-36, December.
    4. K. M. V. Ravi Teja & P. Issac Prasad & K. Vijaya Kumar Reddy & Nagaraj R. Banapurmath & Muhammad A. Kalam & C. Ahamed Saleel, 2022. "Effect of Injection Parameters on the Performance of Compression Ignition Engine Powered with Jamun Seed and Cashew Nutshell B20 Biodiesel Blends," Sustainability, MDPI, vol. 14(8), pages 1-18, April.
    5. He, Wei & Yin, Ershuai & Zhou, Fan & Zhao, Yang & Hu, Dinghua & Li, Jiaqi & Li, Qiang, 2024. "Integrated manifold microchannels and near-junction cooling for enhanced thermal management in 3D heterogeneous packaging technology," Energy, Elsevier, vol. 305(C).
    6. Ağbulut, Ümit & Elibol, Erdem & Demirci, Tuna & Sarıdemir, Suat & Gürel, Ali Etem & Rajak, Upendra & Afzal, Asif & Verma, Tikendra Nath, 2022. "Synthesis of graphene oxide nanoparticles and the influences of their usage as fuel additives on CI engine behaviors," Energy, Elsevier, vol. 244(PA).
    7. Zhou, Jianhong & Lu, Mingxiang & Han, Le & Zhao, Qi & Li, Qiang & Chen, Xuemei, 2025. "Topological manifold microchannel cooling for thermal management of divertor in fusion reactor," Energy, Elsevier, vol. 315(C).
    8. Stanislav Kotšmíd & Zuzana Brodnianská, 2022. "The Effect of Diameter and Position of Transverse Cylindrical Vortex Generators on Heat Transfer Improvement in a Wavy Channel," Mathematics, MDPI, vol. 10(23), pages 1-22, December.
    9. Mohan, Revu Krishn & Sarojini, Jajimoggala & Rajak, Upendra & Verma, Tikendra Nath & Ağbulut, Ümit, 2023. "Alternative fuel production from waste plastics and their usability in light duty diesel engine: Combustion, energy, and environmental analysis," Energy, Elsevier, vol. 265(C).
    10. Krishnamoorthy Ramalingam & Elumalai Perumal Venkatesan & Abdul Aabid & Muneer Baig, 2022. "Assessment of CI Engine Performance and Exhaust Air Quality Outfitted with Real-Time Emulsion Fuel Injection System," Sustainability, MDPI, vol. 14(9), pages 1-19, April.
    11. Özer, Salih. & Demir, Usame & Koçyiğit, Serhat., 2023. "Effect of using borax decahydrate as nanomaterials additive diesel fuel on diesel engine performance and emissions," Energy, Elsevier, vol. 266(C).
    12. Jagadish Kari & Varaha Siva Prasad Vanthala & Jaikumar Sagari, 2024. "The influence of Cr2O3 nanoparticles dispersed Mesua ferrea biodiesel on the analysis performance, combustion, and emissions of diesel engine," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(2), pages 4551-4577, February.
    13. Hajialibabaei, Mahsa & Saghir, M.Ziad & Dincer, Ibrahim & Bicer, Yusuf, 2024. "Optimization of heat dissipation in novel design wavy channel heat sinks for better performance," Energy, Elsevier, vol. 297(C).
    14. Rajak, Upendra & Ağbulut, Ümit & Veza, Ibham & Dasore, Abhishek & Sarıdemir, Suat & Verma, Tikendra Nath, 2022. "Numerical and experimental investigation of CI engine behaviours supported by zinc oxide nanomaterial along with diesel fuel," Energy, Elsevier, vol. 239(PE).
    15. Li, Qingshan & Wang, Chenfang & Wang, Chunmei & Zhou, Taotao & Zhang, Xianwen & Zhang, Yangjun & Zhuge, Weilin & Sun, Li, 2023. "Comparison of organic coolants for boiling cooling of proton exchange membrane fuel cell," Energy, Elsevier, vol. 266(C).
    16. Patil, Basavaras B. & Topannavar, S.N. & Akkoli, K.M. & Shivashimpi, M.M. & Kattimani, Sunilkumar S., 2022. "Experimental investigation to optimize nozzle geometry and compression ratio along with injection pressure on single cylinder DI diesel engine operated with AOME biodiesel," Energy, Elsevier, vol. 254(PA).
    17. Yu, Zhang & Ahmad, Muhammad Sajjad & Shen, Boxiong & Li, Yingna & Ibrahim, Muhammad & Bokhari, Awais & Klemeš, Jiří Jaromír, 2023. "Activated waste cotton cellulose as renewable fuel and value-added chemicals: Thermokinetic analysis, coupled pyrolysis with gas chromatography and mass spectrometry," Energy, Elsevier, vol. 283(C).
    18. Rehman, Tauseef-ur & Park, Cheol Woo, 2025. "Progress in insulated gate bipolar transistor thermal management: From fundamentals to advanced strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 210(C).
    19. Wang, Jin & Yang, Xian & Klemeš, Jiří Jaromír & Tian, Ke & Ma, Ting & Sunden, Bengt, 2023. "A review on nanofluid stability: preparation and application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    20. Varbanov, Petar Sabev & Wang, Bohong & Ocłoń, Paweł & Radziszewska-Zielina, Elżbieta & Ma, Ting & Klemeš, Jiří Jaromír & Jia, Xuexiu, 2023. "Efficiency measures for energy supply and use aiming for a clean circular economy," Energy, Elsevier, vol. 283(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:324:y:2025:i:c:s0360544225016330. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.