IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v322y2025ics0360544225011740.html
   My bibliography  Save this article

Multi-area dynamic economic dispatch considering the demand response and price uncertainty

Author

Listed:
  • Sharifian, Yeganeh
  • Abdi, Hamdi

Abstract

The multi-area dynamic economic dispatch problem determines the optimal scheduling of the output power of committed units and the power exchanged between areas over the entire period to minimize the fuel cost. Optimizing the energy consumption pattern and demand-side management leads to optimal operation of power systems and reduced fuel costs. These two issues are integrated in this paper. In price-based demand side management programs, determining optimal price and price uncertainty are the fundamental challenges, which is examined in this research. First, a deterministic model of the problem in the presence of a time of use program, is introduced. This model, while determining the optimal price in both linear and nonlinear time of use programs, reduces the total cost by 3.03 % and 3.56 %, respectively. Furthermore, load curve characteristics such as peak to valley, load factor, and peak compensation are improved. Then, by considering the price uncertainty, the probabilistic model of the problem is introduced and is studied by using the robust optimization method. The problem is solved using the crow search optimization algorithm in a 40-unit test system for a 24-h period, and the results show reduced fuel costs, and increased customer profits.

Suggested Citation

  • Sharifian, Yeganeh & Abdi, Hamdi, 2025. "Multi-area dynamic economic dispatch considering the demand response and price uncertainty," Energy, Elsevier, vol. 322(C).
  • Handle: RePEc:eee:energy:v:322:y:2025:i:c:s0360544225011740
    DOI: 10.1016/j.energy.2025.135532
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225011740
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.135532?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Dehnavi, Ehsan & Abdi, Hamdi, 2016. "Optimal pricing in time of use demand response by integrating with dynamic economic dispatch problem," Energy, Elsevier, vol. 109(C), pages 1086-1094.
    2. Mohammadian, M. & Lorestani, A. & Ardehali, M.M., 2018. "Optimization of single and multi-areas economic dispatch problems based on evolutionary particle swarm optimization algorithm," Energy, Elsevier, vol. 161(C), pages 710-724.
    3. Sharifian, Yeganeh & Abdi, Hamdi, 2024. "Multi-area economic dispatch problem: Methods, uncertainties, and future directions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    4. Hossein Lotfi, 2022. "A Multiobjective Evolutionary Approach for Solving the Multi-Area Dynamic Economic Emission Dispatch Problem Considering Reliability Concerns," Sustainability, MDPI, vol. 15(1), pages 1-23, December.
    5. Chen, Xu & Lu, Qi & Yuan, Ye & He, Kaixun, 2024. "A novel derivative search political optimization algorithm for multi-area economic dispatch incorporating renewable energy," Energy, Elsevier, vol. 300(C).
    6. Dimitris Bertsimas & Melvyn Sim, 2004. "The Price of Robustness," Operations Research, INFORMS, vol. 52(1), pages 35-53, February.
    7. Secui, Dinu Calin, 2015. "The chaotic global best artificial bee colony algorithm for the multi-area economic/emission dispatch," Energy, Elsevier, vol. 93(P2), pages 2518-2545.
    8. Lin, Jian & Wang, Zhou-Jing, 2019. "Multi-area economic dispatch using an improved stochastic fractal search algorithm," Energy, Elsevier, vol. 166(C), pages 47-58.
    9. Ying-Yi Hong & Hao Zeng, 2024. "Decentralized Multi-Area Economic Dispatch in Power Systems Using the Consensus Algorithm," Energies, MDPI, vol. 17(15), pages 1-15, July.
    10. Meng, Anbo & Xu, Xuancong & Zhang, Zhan & Zeng, Cong & Liang, Ruduo & Zhang, Zheng & Wang, Xiaolin & Yan, Baiping & Yin, Hao & Luo, Jianqiang, 2022. "Solving high-dimensional multi-area economic dispatch problem by decoupled distributed crisscross optimization algorithm with population cross generation strategy," Energy, Elsevier, vol. 258(C).
    11. Ahmed, Ijaz & Rehan, Muhammad & Basit, Abdul & Malik, Saddam Hussain & Alvi, Um-E-Habiba & Hong, Keum-Shik, 2022. "Multi-area economic emission dispatch for large-scale multi-fueled power plants contemplating inter-connected grid tie-lines power flow limitations," Energy, Elsevier, vol. 261(PB).
    12. Lu, Xinhui & Liu, Zhaoxi & Ma, Li & Wang, Lingfeng & Zhou, Kaile & Feng, Nanping, 2020. "A robust optimization approach for optimal load dispatch of community energy hub," Applied Energy, Elsevier, vol. 259(C).
    13. Paspuel Cristian & Luis Tipán, 2024. "Multi-Objetive Dispatching in Multi-Area Power Systems Using the Fuzzy Satisficing Method," Energies, MDPI, vol. 17(20), pages 1-36, October.
    14. Basu, M., 2014. "Teaching–learning-based optimization algorithm for multi-area economic dispatch," Energy, Elsevier, vol. 68(C), pages 21-28.
    15. Sharifian, Yeganeh & Abdi, Hamdi, 2023. "Solving multi-area economic dispatch problem using hybrid exchange market algorithm with grasshopper optimization algorithm," Energy, Elsevier, vol. 267(C).
    16. Chen, Xu & Tang, Guowei, 2022. "Solving static and dynamic multi-area economic dispatch problems using an improved competitive swarm optimization algorithm," Energy, Elsevier, vol. 238(PC).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sharifian, Yeganeh & Abdi, Hamdi, 2023. "Solving multi-area economic dispatch problem using hybrid exchange market algorithm with grasshopper optimization algorithm," Energy, Elsevier, vol. 267(C).
    2. Chen, Xu & Lu, Qi & Yuan, Ye & He, Kaixun, 2024. "A novel derivative search political optimization algorithm for multi-area economic dispatch incorporating renewable energy," Energy, Elsevier, vol. 300(C).
    3. Zare, Mohsen & Farhang, Saman & Akbari, Mohammad Amin & Azizipanah-Abarghooee, Rasoul & Trojovský, Pavel, 2024. "Optimizing reserve-constrained economic dispatch: Cheetah optimizer with constraint handling method in static/dynamic/single/multi-area systems," Energy, Elsevier, vol. 313(C).
    4. Sharifian, Yeganeh & Abdi, Hamdi, 2024. "Multi-area economic dispatch problem: Methods, uncertainties, and future directions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    5. Hossein Lotfi & Mohammad Hasan Nikkhah, 2023. "Presenting a Novel Evolutionary Method for Reserve Constrained Multi-Area Economic/Emission Dispatch Problem," Sustainability, MDPI, vol. 15(13), pages 1-20, July.
    6. Chen, Xu & Tang, Guowei, 2022. "Solving static and dynamic multi-area economic dispatch problems using an improved competitive swarm optimization algorithm," Energy, Elsevier, vol. 238(PC).
    7. Xu, Shengping & Xiong, Guojiang & Mohamed, Ali Wagdy & Bouchekara, Houssem R.E.H., 2022. "Forgetting velocity based improved comprehensive learning particle swarm optimization for non-convex economic dispatch problems with valve-point effects and multi-fuel options," Energy, Elsevier, vol. 256(C).
    8. Lin, Chenhao & Liang, Huijun & Pang, Aokang, 2023. "A fast data-driven optimization method of multi-area combined economic emission dispatch," Applied Energy, Elsevier, vol. 337(C).
    9. Meng, Anbo & Zeng, Cong & Xu, Xuancong & Ding, Weifeng & Liu, Shiyun & Chen, De & Yin, Hao, 2022. "Decentralized power economic dispatch by distributed crisscross optimization in multi-agent system," Energy, Elsevier, vol. 246(C).
    10. Meng, Anbo & Xu, Xuancong & Zhang, Zhan & Zeng, Cong & Liang, Ruduo & Zhang, Zheng & Wang, Xiaolin & Yan, Baiping & Yin, Hao & Luo, Jianqiang, 2022. "Solving high-dimensional multi-area economic dispatch problem by decoupled distributed crisscross optimization algorithm with population cross generation strategy," Energy, Elsevier, vol. 258(C).
    11. Bu, Xuhui & Ren, Xuyang & Yin, Yanling & Xie, Yingbo, 2024. "A novel economic dispatch of energy-renewable multi-area power systems with group-based differential evolution," Energy, Elsevier, vol. 313(C).
    12. Gurpreet Kaur & Mohit Kumar & J. S. Dhillon, 2025. "Dynamic Multi-area Generation Scheduling with Renewable Energy Sources Exploiting Optimistic Sine–Cosine Algorithm," SN Operations Research Forum, Springer, vol. 6(2), pages 1-53, June.
    13. Narimani, Hossein & Razavi, Seyed-Ehsan & Azizivahed, Ali & Naderi, Ehsan & Fathi, Mehdi & Ataei, Mohammad H. & Narimani, Mohammad Rasoul, 2018. "A multi-objective framework for multi-area economic emission dispatch," Energy, Elsevier, vol. 154(C), pages 126-142.
    14. Aslani, Mehrdad & Mashayekhi, Mehdi & Hashemi-Dezaki, Hamed & Ketabi, Abbas, 2022. "Robust optimal operation of energy hub incorporating integrated thermal and electrical demand response programs under various electric vehicle charging modes," Applied Energy, Elsevier, vol. 321(C).
    15. Huang, Yuqing & Lan, Hai & Hong, Ying-Yi & Wen, Shuli & Yin, He, 2019. "Optimal generation scheduling for a deep-water semi-submersible drilling platform with uncertain renewable power generation and loads," Energy, Elsevier, vol. 181(C), pages 897-907.
    16. Basu, M., 2023. "Multi-county combined heat and power dynamic economic emission dispatch incorporating electric vehicle parking lot," Energy, Elsevier, vol. 275(C).
    17. SeyedGarmroudi, SeyedDavoud & Kayakutlu, Gulgun & Kayalica, M. Ozgur & Çolak, Üner, 2024. "Improved Pelican optimization algorithm for solving load dispatch problems," Energy, Elsevier, vol. 289(C).
    18. Zhang, Heng & Hu, Xiao & Cheng, Haozhong & Zhang, Shenxi & Hong, Shaoyun & Gu, Qingfa, 2021. "Coordinated scheduling of generators and tie lines in multi-area power systems under wind energy uncertainty," Energy, Elsevier, vol. 222(C).
    19. Gazijahani, Farhad Samadi & Salehi, Javad, 2018. "Reliability constrained two-stage optimization of multiple renewable-based microgrids incorporating critical energy peak pricing demand response program using robust optimization approach," Energy, Elsevier, vol. 161(C), pages 999-1015.
    20. Dai, Wei & Yang, Zhifang & Yu, Juan & Cui, Wei & Li, Wenyuan & Li, Jinghua & Liu, Hui, 2021. "Economic dispatch of interconnected networks considering hidden flexibility," Energy, Elsevier, vol. 223(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:322:y:2025:i:c:s0360544225011740. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.