IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v321y2025ics0360544225011648.html
   My bibliography  Save this article

A new method for the preparation of biomass-based solid fuels: Pyrolysis-impregnation-cobaking

Author

Listed:
  • Ge, Lichao
  • Zhao, Can
  • Wang, Ziqian
  • Zuo, Mingjin
  • Yao, Lei
  • Wu, Kefeng
  • Wang, Yang
  • Xu, Chang

Abstract

As global climate change becomes increasingly severe, renewable energy sources must be identified. However, renewable biomass-based fuel suffers from high combustion rates and low heating values. To further optimise the performance of biomass-based fuels. In this work, a new biomass-based solid fuel with a low combustion rate and high heating value, i.e., biocoal, was prepared via pyrolysis–impregnation–cobaking using corn stover pellets and peanut seedling pellets as the raw materials. The combustion rate of this biomass-based solid fuel was effectively reduced, as evidenced by a decrease in the maximum mass loss rate of combustion, along with a shift of the mass loss peak towards the high temperature region. The higher heating value of this biocoal from peanut seedling pellets >20 MJ kg−1 (200 and 240 °C), about 5 % higher than biochar; therefore, use of biocoal instead of biomass in direct-fired biomass power plants promises to improve power generation efficiency. On the other hand, biocoal can also increase the proportion of biomass blended in coal-biomass hybrid power plants. Finally, the baking temperature of 200 °C was determined by considering the optimal heating value, combustion rate and yield of the biocoal, which can produce biocoal while meeting yield and heating value.

Suggested Citation

  • Ge, Lichao & Zhao, Can & Wang, Ziqian & Zuo, Mingjin & Yao, Lei & Wu, Kefeng & Wang, Yang & Xu, Chang, 2025. "A new method for the preparation of biomass-based solid fuels: Pyrolysis-impregnation-cobaking," Energy, Elsevier, vol. 321(C).
  • Handle: RePEc:eee:energy:v:321:y:2025:i:c:s0360544225011648
    DOI: 10.1016/j.energy.2025.135522
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225011648
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.135522?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Ge, Lichao & Zhao, Can & Zuo, Mingjin & Du, Yuying & Yao, Lei & Li, Dongyang & Chu, Huaqiang & Wang, Yang & Xu, Chang, 2023. "Effect of Fe on the pyrolysis products of lignin, cellulose and hemicellulose, and the formation of carbon nanotubes," Renewable Energy, Elsevier, vol. 211(C), pages 13-20.
    2. Oh, Kwang Cheol & Kim, Junghwan & Park, Sun Yong & Kim, Seok Jun & Cho, La Hoon & Lee, Chung Geon & Roh, Jiwon & Kim, Dae Hyun, 2021. "Development and validation of torrefaction optimization model applied element content prediction of biomass," Energy, Elsevier, vol. 214(C).
    3. Durango Padilla, Elias Ricardo & Hansted, Felipe Augusto Santiago & Luna, Carlos Manuel Romero & de Campos, Cristiane Inácio & Yamaji, Fabio Minoru, 2024. "Biochar derived from agricultural waste and its application as energy source in blast furnace," Renewable Energy, Elsevier, vol. 220(C).
    4. Ge, Lichao & Zhao, Can & Chen, Simo & Li, Qian & Zhou, Tianhong & Jiang, Han & Li, Xi & Wang, Yang & Xu, Chang, 2022. "An analysis of the carbonization process and volatile-release characteristics of coal-based activated carbon," Energy, Elsevier, vol. 257(C).
    5. Zhao, Can & Ge, Lichao & Li, Xi & Zuo, Mingjin & Xu, Chunyao & Chen, Simo & Li, Qian & Wang, Yang & Xu, Chang, 2023. "Effects of the carbonization temperature and intermediate cooling mode on the properties of coal-based activated carbon," Energy, Elsevier, vol. 273(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Can & Ge, Lichao & Zuo, Mingjin & Mai, Longhui & Chen, Simo & Li, Xiaolong & Li, Qian & Wang, Yang & Xu, Chang, 2023. "Study on the mechanical strength and iodine adsorption behavior of coal-based activated carbon based on orthogonal experiments," Energy, Elsevier, vol. 282(C).
    2. Feng, Hongcui & Zhou, Tianhong & Ge, Lichao & Li, Qian & Zhao, Chan & Huang, Jing & Wang, Yang, 2024. "Study on the preparation of high value-added activated carbon from petroleum coke: Comparison between one- and two-step methods for carbonization and activation," Energy, Elsevier, vol. 292(C).
    3. Tian, Ke & Zhuang, Zitong & Wang, Junying & Jiang, Jiangang & Jin, Hui, 2025. "Preparation of biochar adsorbent materials by pyrolysis of rapeseed pollen in supercritical CO2," Energy, Elsevier, vol. 324(C).
    4. Zhang, Congyu & Zhan, Yong & Chen, Wei-Hsin & Lamba, Bhawna Yadav & Zhang, Ying, 2024. "Relative fuel property variation of gas-pressurized and conventional torrefaction for biochar performance assessment," Renewable Energy, Elsevier, vol. 235(C).
    5. Antonios Nazos & Dorothea Politi & Georgios Giakoumakis & Dimitrios Sidiras, 2022. "Simulation and Optimization of Lignocellulosic Biomass Wet- and Dry-Torrefaction Process for Energy, Fuels and Materials Production: A Review," Energies, MDPI, vol. 15(23), pages 1-35, November.
    6. Javidi, Mahbobeh & Entezari, Mohammad H., 2024. "The effect of ultrasonic waves on the structure, morphology, and thermal conductivity of graphene oxide as nanofluids for direct absorption solar collector application," Renewable Energy, Elsevier, vol. 237(PB).
    7. Yadav, Nidhi & Yadav, Gaurav & Ahmaruzzaman, Md., 2024. "Selective synthesis of oxygenated fuel derivative from microwave assisted acetalization of glycerol: Optimization and mechanistic investigations," Renewable Energy, Elsevier, vol. 236(C).
    8. Liu, Qian & Sun, Jianguo & Gu, Yonghua & Zhong, Wenqi & Gao, Ke, 2024. "Experimental study on CO2 co-gasification characteristics of biomass and waste plastics: Insight into interaction and targeted regulation method," Energy, Elsevier, vol. 292(C).
    9. Zhang, Congyu & Chen, Wei-Hsin & Zhang, Ying & Ho, Shih-Hsin, 2023. "Influence of microorganisms on the variation of raw and oxidatively torrefied microalgal biomass properties," Energy, Elsevier, vol. 276(C).
    10. Zhou, Tianhong & Ge, Lichao & Li, Qian & Yang, Long & Mai, Longhui & Huang, Jing & Wang, Yang & Xu, Chang, 2023. "Combustion and gasification properties of petroleum coke and its pyrolytic semi-coke," Energy, Elsevier, vol. 266(C).
    11. Zhao, Can & Ge, Lichao & Mai, Longhui & Chen, Simo & Li, Qian & Yao, Lei & Li, Dongyang & Wang, Yang & Xu, Chang, 2023. "Preparation and performance of coal-based activated carbon based on an orthogonal experimental study," Energy, Elsevier, vol. 274(C).
    12. Ge, Lichao & Zhao, Can & Zhou, Tianhong & Chen, Simo & Li, Qian & Wang, Xuguang & Shen, Dong & Wang, Yang & Xu, Chang, 2023. "An analysis of the carbonization process of coal-based activated carbon at different heating rates," Energy, Elsevier, vol. 267(C).
    13. Dong, Xinyuan & Wang, Zhixing & Gao, Lihua & Zhang, Junhong & Zhan, Wenlong & He, Zhijun, 2024. "Characteristic and mechanistic study of enhanced carbon-based synfuel from biomass and coal by magnetite additive for synergistic co-carbonization technology," Renewable Energy, Elsevier, vol. 237(PA).
    14. Niu, Jian & Miao, Jiawen & Zhang, Huirong & Guo, Yanxia & Li, Linbo & Cheng, Fangqin, 2023. "Focusing on the impact of inherent minerals in coal on activated carbon production and its performance: The role of trace sodium on SO2 and/or NO removal," Energy, Elsevier, vol. 263(PB).
    15. Amir, Nizar & Hussin, Farihahusnah & Aroua, Mohamed Kheireddine & Gozan, Misri, 2025. "Exploring seaweed as a sustainable solution for carbon dioxide adsorption: Trends, opportunities, and future research prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 213(C).
    16. Niu, Jian & Zhang, Huirong & Xu, Wenzhen & Guo, Yanxia & Li, Linbo & Cheng, Fangqin, 2024. "Utilization of inherent minerals in coal for high-performance activated carbon production: The mechanism of deSO2 and/or deNOx enhanced by in situ transformed calcium sulfide (CaS)," Energy, Elsevier, vol. 289(C).
    17. Chaudhuri, Pratik & Pande, Rohan & Baraiya, Nikhil A., 2025. "From char to flame: Evaluating bamboo bio-char combustion via cone calorimetry and thermogravimetric analysis," Energy, Elsevier, vol. 314(C).
    18. Ge, Lichao & Zhao, Can & Zuo, Mingjin & Du, Yuying & Yao, Lei & Li, Dongyang & Chu, Huaqiang & Wang, Yang & Xu, Chang, 2023. "Effect of Fe on the pyrolysis products of lignin, cellulose and hemicellulose, and the formation of carbon nanotubes," Renewable Energy, Elsevier, vol. 211(C), pages 13-20.
    19. Ting Gao & Qian Zhu & Zhidong Zhou & Yongbo Wu & Jianhui Xue, 2022. "Effects of Biochar-Based Fertilizers on Energy Characteristics and Growth of Black Locust Seedlings," Sustainability, MDPI, vol. 14(9), pages 1-14, April.
    20. Kartal, Furkan & Özveren, Uğur, 2022. "Prediction of torrefied biomass properties from raw biomass," Renewable Energy, Elsevier, vol. 182(C), pages 578-591.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:321:y:2025:i:c:s0360544225011648. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.