IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v31y2006i15p3208-3219.html
   My bibliography  Save this article

Greenhouse effect reduction and energy recovery from waste landfill

Author

Listed:
  • Lombardi, Lidia
  • Carnevale, Ennio
  • Corti, Andrea

Abstract

Waste management systems are a non-negligible source of greenhouse gases. In particular, methane and carbon dioxide emissions occur in landfills due to the breakdown of biodegradable carbon compounds operated on by anaerobic bacteria. The conventional possibilities of reducing the greenhouse effect (GHE) from waste landfilling consists in landfill gas (LFG) flaring or combustion with energy recovery in reciprocating engines. These conventional treatments are compared with three innovative possibilities: the direct LFG feeding to a fuel cell (FC); the production of a hydrogen-rich gas, by means of steam reforming and CO2 capture, to feed a stationary FC; the production of a hydrogen-rich gas, by means of steam reforming and CO2 capture, to feed a vehicle FC. The comparison is carried out from an environmental point of view, calculating the specific production of GHE per unit mass of waste disposed in landfill equipped with the different considered technologies.

Suggested Citation

  • Lombardi, Lidia & Carnevale, Ennio & Corti, Andrea, 2006. "Greenhouse effect reduction and energy recovery from waste landfill," Energy, Elsevier, vol. 31(15), pages 3208-3219.
  • Handle: RePEc:eee:energy:v:31:y:2006:i:15:p:3208-3219
    DOI: 10.1016/j.energy.2006.03.034
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544206000983
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2006.03.034?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ho-Chuan Lin & Guan-Bang Chen & Fang-Hsien Wu & Hong-Yeng Li & Yei-Chin Chao, 2019. "An Experimental and Numerical Study on Supported Ultra-Lean Methane Combustion," Energies, MDPI, vol. 12(11), pages 1-18, June.
    2. Lombardi, L. & Carnevale, E.A., 2016. "Analysis of an innovative process for landfill gas quality improvement," Energy, Elsevier, vol. 109(C), pages 1107-1117.
    3. Kiani, Mehrdad & Houshfar, Ehsan & Ashjaee, Mehdi, 2019. "Experimental investigations on the flame structure and temperature field of landfill gas in impinging slot burners," Energy, Elsevier, vol. 170(C), pages 507-520.
    4. Amornchai Challcharoenwattana & Chanathip Pharino, 2015. "Co-Benefits of Household Waste Recycling for Local Community’s Sustainable Waste Management in Thailand," Sustainability, MDPI, vol. 7(6), pages 1-21, June.
    5. Younes, Amin & Fingerman, Kevin R. & Barrientos, Cassidy & Carman, Jerome & Johnson, Karly & Wallach, Eli S., 2022. "How the U.S. Renewable Fuel Standard could use garbage to pay for electric vehicles," Energy Policy, Elsevier, vol. 166(C).
    6. Hao, Xiaoli & Yang, Hongxing & Zhang, Guoqiang, 2008. "Trigeneration: A new way for landfill gas utilization and its feasibility in Hong Kong," Energy Policy, Elsevier, vol. 36(10), pages 3662-3673, October.
    7. Tsipis, E.V. & Agarkov, D.A. & Borisov, Yu.A. & Kiseleva, S.V. & Tarasenko, A.B. & Bredikhin, S.I. & Kharton, V.V., 2023. "Waste gas utilization potential for solid oxide fuel cells: A brief review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    8. Zappini, Giovanni & Cocca, Paola & Rossi, Diana, 2010. "Performance analysis of energy recovery in an Italian municipal solid waste landfill," Energy, Elsevier, vol. 35(12), pages 5063-5069.
    9. Kazemi-Beydokhti, Amin & Zeinali Heris, Saeed, 2012. "Thermal optimization of combined heat and power (CHP) systems using nanofluids," Energy, Elsevier, vol. 44(1), pages 241-247.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:31:y:2006:i:15:p:3208-3219. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.