IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v29y2004i7p1053-1068.html
   My bibliography  Save this article

Experimental study on the performance of a heat pump system with refrigerant mixtures’ composition change

Author

Listed:
  • Kim, Minsung
  • Kim, Min Soo
  • Kim, Yongchan

Abstract

An experimental study on the capacity control of a heat pump system has been performed using refrigerant mixtures of R32/134a. A test apparatus was made of a refrigeration part and two different types of composition changing parts; a single separator system and a separator–rectifier combined system. Analysis of the separation process was made for a basic single separator system. In order to pursue a wider range of composition change, a separator–rectifier combined system with packed-type distillation column was designed with Raschig ring as packing material. The composition changing part was connected to the condenser outlet and the evaporator inlet. Heating capacity, cooling capacity, and coefficient of performance (COP) of the system were measured under heating and cooling conditions. When the single separator system was used as a composition changing part, the range of composition change in the refrigeration system was approximately 13%. Around 26% of composition change was obtained using the separator–rectifier combined system. From the composition change with the separator–rectifier combined system, the capacity improved from 2.6 to 3.4 kW in the cooling test and from 1.8 to 2.4 kW in the heating test. As the composition of R32 increases, heating and cooling capacities were improved, whereas the value of COP with the refrigerant mixture is enhanced due to a temperature glide effect. It is concluded that the system capacity can be adjusted to meet load requirements by controlling the composition of the refrigerant mixture.

Suggested Citation

  • Kim, Minsung & Kim, Min Soo & Kim, Yongchan, 2004. "Experimental study on the performance of a heat pump system with refrigerant mixtures’ composition change," Energy, Elsevier, vol. 29(7), pages 1053-1068.
  • Handle: RePEc:eee:energy:v:29:y:2004:i:7:p:1053-1068
    DOI: 10.1016/j.energy.2003.12.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544203002962
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2003.12.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kim, Jiyoung & Park, Seong-Ryong & Baik, Young-Jin & Chang, Ki-Chang & Ra, Ho-Sang & Kim, Minsung & Kim, Yongchan, 2013. "Experimental study of operating characteristics of compression/absorption high-temperature hybrid heat pump using waste heat," Renewable Energy, Elsevier, vol. 54(C), pages 13-19.
    2. Settino, Jessica & Sant, Tonio & Micallef, Christopher & Farrugia, Mario & Spiteri Staines, Cyril & Licari, John & Micallef, Alexander, 2018. "Overview of solar technologies for electricity, heating and cooling production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 892-909.
    3. Zheng, Nan & Song, Weidong & Zhao, Li, 2013. "Theoretical and experimental investigations on the changing regularity of the extreme point of the temperature difference between zeotropic mixtures and heat transfer fluid," Energy, Elsevier, vol. 55(C), pages 541-552.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:29:y:2004:i:7:p:1053-1068. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.