IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v299y2024ics0360544224012386.html
   My bibliography  Save this article

Application of the fast 3D simplified simulation method for the large CAP1400 nuclear island evaporator based on the coupled source term method

Author

Listed:
  • Guo, Zhenyang
  • Chen, Yanmu
  • Lu, Yeming
  • Wang, Tongjun
  • Wang, Xiaofang
  • Jiang, Xiaomo

Abstract

As for the evaporator of the large CAP1400 nuclear power plant, it has a large volume with numerous tubes along with the complex flow heat transfer phenomenon. The traditional direct simulation method usually takes a lot of time and computing resources to obtain the flow heat transfer data. To solve the problem, a fast simulation method established on the porous medium source term was herein proposed. In this simplified simulation method, the complex evaporator model is replaced with the porous medium model, where the derived heat and momentum source terms are added into the governing equation to control the heat flows. Five kinds of simplified evaporator models with different numbers of pipes were set to be the research objects, the internal flows inside the evaporator were studied with the traditional direct simulation method and the newly proposed simplified simulation method. Via comparative analysis, it can be found that: 1) The newly proposed simplified simulation method accurately captures the distribution characteristics of pressure, temperature, and entropy production in the evaporator, serving as a viable alternative to traditional direct simulation methods. Specifically, the average simulation errors for inlet-outlet pressure difference and temperature difference are both less than 5 % and 7 %, respectively. 2) The newly proposed simplified simulation method can capture the mutual interference effects between the evaporator and the nuclear main pump. When the evaporator is connected in series with the main nuclear pump, the average head of the main pump increases by 0.34 m, while the efficiency decreases by an average of 0.34 %. The average simulation errors of the simplified simulation method are 0.06 m and 0.13 %, respectively. 3) The application of the simplified simulation method leads to a significant 85 % decrease in the average computational cost for evaporator calculations and a notable 36 % decrease for combined calculations of the evaporator and main pump. The study here is expected to provide technique support for the simulation and evaluation of the large nuclear island.

Suggested Citation

  • Guo, Zhenyang & Chen, Yanmu & Lu, Yeming & Wang, Tongjun & Wang, Xiaofang & Jiang, Xiaomo, 2024. "Application of the fast 3D simplified simulation method for the large CAP1400 nuclear island evaporator based on the coupled source term method," Energy, Elsevier, vol. 299(C).
  • Handle: RePEc:eee:energy:v:299:y:2024:i:c:s0360544224012386
    DOI: 10.1016/j.energy.2024.131465
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224012386
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131465?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:299:y:2024:i:c:s0360544224012386. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.