IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v298y2024ics0360544224011411.html
   My bibliography  Save this article

Experimental investigation on dynamic mechanical characteristics of casing during hydrate decomposition using depressurization

Author

Listed:
  • Liu, Xiangzhi
  • Chang, Yuanjiang
  • Wang, Kang
  • Sun, Baojiang
  • Du, Chunan
  • Sun, Huanzhao

Abstract

During marine hydrate production, some potentially undesirable consequences of casing strength failure are prone to occur. However, conventional methods used in casing mechanical analysis is unable to handle casing failure accurately, as the macro constitutive model employed in current simulation could not reflect the real stress-strain relationship of hydrate reservoir. This paper aimed at proposing an experimental method to investigate dynamic mechanical responses of casing during hydrate decomposition based on the self-developed experiment system, in which overlying stress was simulated to construct a similar mechanical environment of casing. By conducting laboratory-scale tests, the effect of overlying stress on casing mechanical behaviors could be revealed, and comparative analysis of casing axial stress obtained from experiment and simulation was carried out. Experimental results indicated that axial stress and extrusion pressure of casing increased 20.91 % and 7.18 % with the increase of overlying stress, respectively. Casing axial stress increased first and then gradually reached stable in different depressurization stage, which agreed well with the results calculated by numerical simulation. The maximum error between experimental data and simulation results was 11.7 %, 11.1 % and 10.2 % in different depressurization stage, respectively. The proposed approach could provide reference for casing safety design of natural gas hydrate production.

Suggested Citation

  • Liu, Xiangzhi & Chang, Yuanjiang & Wang, Kang & Sun, Baojiang & Du, Chunan & Sun, Huanzhao, 2024. "Experimental investigation on dynamic mechanical characteristics of casing during hydrate decomposition using depressurization," Energy, Elsevier, vol. 298(C).
  • Handle: RePEc:eee:energy:v:298:y:2024:i:c:s0360544224011411
    DOI: 10.1016/j.energy.2024.131368
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224011411
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131368?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:298:y:2024:i:c:s0360544224011411. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.