IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v293y2024ics0360544224003943.html
   My bibliography  Save this article

Staged supply of fuel and air to the combustion chamber to reduce emissions of harmful substances

Author

Listed:
  • Bolegenova, Saltanat
  • Askarova, Аliya
  • Georgiev, Aleksandar
  • Nugymanova, Aizhan
  • Maximov, Valeriy
  • Bolegenova, Symbat
  • Adil'bayev, Nurken

Abstract

The paper presents the results of numerical experiments on the implementation of Over Fire Air (OFA) technology at a coal burning thermal power plant (TPP) in order to reduce emissions of harmful substances into the atmosphere. To implement the OFA technology, various options for supplying additional air through injectors in the upper part of the combustion chamber have been studied. For the first time, various heights (h = 8 m, 9 m, 10 m, 11 m, 12 m) of the location of OFA injectors in the combustion chamber at the kazakh TPP were studied. For the first time, different volumes of additional air supply through the injectors are simulated when OFA is 0% - this is the base case (traditional combustion) and when OFA is 5%, 10%, 15%, 18%, 20%, 25% and 30% of the total volume air required for complete combustion of the fuel. It is shown that at the optimal location height of OFA injectors (h = 9 m), an increase in the volume of additional air to 18% leads to a decrease in the concentrations of carbon monoxide CO by about 36%, and nitrogen dioxide NO2 by 25% compared with the base case (OFA = 0%).

Suggested Citation

  • Bolegenova, Saltanat & Askarova, Аliya & Georgiev, Aleksandar & Nugymanova, Aizhan & Maximov, Valeriy & Bolegenova, Symbat & Adil'bayev, Nurken, 2024. "Staged supply of fuel and air to the combustion chamber to reduce emissions of harmful substances," Energy, Elsevier, vol. 293(C).
  • Handle: RePEc:eee:energy:v:293:y:2024:i:c:s0360544224003943
    DOI: 10.1016/j.energy.2024.130622
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224003943
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.130622?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:293:y:2024:i:c:s0360544224003943. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.