An efficient analytical approach for steady-state upscaling of relative permeability and capillary pressure
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2023.128426
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.References listed on IDEAS
- Siavashi, Majid & Talesh Bahrami, Hamid Reza & Saffari, Hamid, 2015. "Numerical investigation of flow characteristics, heat transfer and entropy generation of nanofluid flow inside an annular pipe partially or completely filled with porous media using two-phase mixture ," Energy, Elsevier, vol. 93(P2), pages 2451-2466.
- Ma, Lin & Dowey, Patrick J. & Rutter, Ernest & Taylor, Kevin G. & Lee, Peter D., 2019. "A novel upscaling procedure for characterising heterogeneous shale porosity from nanometer-to millimetre-scale in 3D," Energy, Elsevier, vol. 181(C), pages 1285-1297.
- Lyu, Yang & Huang, Qiyu & Liu, Luoqian & Zhang, Dongxu & Xue, Huiyong & Zhang, Fuqiang & Zhang, Hanwen & Li, Rongbin & Wang, Qiuchen, 2022. "Experimental and molecular dynamics simulation investigations of adhesion in heavy oil/water/pipeline wall systems during cold transportation," Energy, Elsevier, vol. 250(C).
- Zeng, Fang & Dong, Chunmei & Lin, Chengyan & Tian, Shansi & Wu, Yuqi & Lin, Jianli & Liu, Binbin & Zhang, Xianguo, 2022. "Pore structure characteristics of reservoirs of Xihu Sag in East China Sea Shelf Basin based on dual resolution X-ray computed tomography and their influence on permeability," Energy, Elsevier, vol. 239(PD).
- Wang, Yanji & Li, Hangyu & Xu, Jianchun & Liu, Shuyang & Wang, Xiaopu, 2022. "Machine learning assisted relative permeability upscaling for uncertainty quantification," Energy, Elsevier, vol. 245(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Chen, Bingyang & Zeng, Xingjie & Zhang, Weishan & Fan, Lulu & Cao, Shaohua & Zhou, Jiehan, 2023. "Knowledge sharing-based multi-block federated learning for few-shot oil layer identification," Energy, Elsevier, vol. 283(C).
- Lyu, Yang & Huang, Qiyu, 2023. "Flow characteristics of heavy oil-water flow during high water-content cold transportation," Energy, Elsevier, vol. 262(PA).
- Liu, Bo & Mohammadi, Mohammad-Reza & Ma, Zhongliang & Bai, Longhui & Wang, Liu & Xu, Yaohui & Hemmati-Sarapardeh, Abdolhossein & Ostadhassan, Mehdi, 2023. "Pore structure evolution of Qingshankou shale (kerogen type I) during artificial maturation via hydrous and anhydrous pyrolysis: Experimental study and intelligent modeling," Energy, Elsevier, vol. 282(C).
- Wang, Ziwei & Qin, Yong & Shen, Jian & Li, Teng & Zhang, Xiaoyang & Cai, Ying, 2022. "A novel permeability prediction model for coal based on dynamic transformation of pores in multiple scales," Energy, Elsevier, vol. 257(C).
- Garoosi, Faroogh & Hoseininejad, Faraz & Rashidi, Mohammad Mehdi, 2016. "Numerical study of natural convection heat transfer in a heat exchanger filled with nanofluids," Energy, Elsevier, vol. 109(C), pages 664-678.
- Mamourian, Mojtaba & Milani Shirvan, Kamel & Mirzakhanlari, Soroush, 2016. "Two phase simulation and sensitivity analysis of effective parameters on turbulent combined heat transfer and pressure drop in a solar heat exchanger filled with nanofluid by Response Surface Methodol," Energy, Elsevier, vol. 109(C), pages 49-61.
- Sun, Xingshen & Hou, Lei & Tang, Shuaishuai & Wang, Mincong & Xiong, Yifan & Zhu, Zuoliang, 2024. "Removal mechanism of adhering heavy oil from pipeline wall in low-temperature flow," Energy, Elsevier, vol. 296(C).
- Hesam Moghadasi & Mohamad Bayat & Ehsan Aminian & Jesper H. Hattel & Mahdi Bodaghi, 2022. "A Computational Fluid Dynamics Study of Laminar Forced Convection Improvement of a Non-Newtonian Hybrid Nanofluid within an Annular Pipe in Porous Media," Energies, MDPI, vol. 15(21), pages 1-16, November.
- Ma, Lin & Fauchille, Anne-Laure & Chandler, Michael R. & Dowey, Patrick & Taylor, Kevin G. & Mecklenburgh, Julian & Lee, Peter D., 2021. "In-situ synchrotron characterisation of fracture initiation and propagation in shales during indentation," Energy, Elsevier, vol. 215(PB).
- Zhou, H.W. & Liu, Z.L. & Zhong, J.C. & Chen, B.C. & Zhao, J.W. & Xue, D.J., 2022. "NMRI online observation of coal fracture and pore structure evolution under confining pressure and axial compressive loads: A novel approach," Energy, Elsevier, vol. 261(PA).
- Zeng, Fang & Dong, Chunmei & Lin, Chengyan & Tian, Shansi & Wu, Yuqi & Lin, Jianli & Liu, Binbin & Zhang, Xianguo, 2022. "Pore structure characteristics of reservoirs of Xihu Sag in East China Sea Shelf Basin based on dual resolution X-ray computed tomography and their influence on permeability," Energy, Elsevier, vol. 239(PD).
- Shakouri, Sina & Mohammadzadeh-Shirazi, Maysam, 2023. "Modeling of asphaltic sludge formation during acidizing process of oil well reservoir using machine learning methods," Energy, Elsevier, vol. 285(C).
- Wu, Yuqi & Tahmasebi, Pejman & Liu, Keyu & Lin, Chengyan & Kamrava, Serveh & Liu, Shengbiao & Fagbemi, Samuel & Liu, Chang & Chai, Rukuai & An, Senyou, 2023. "Modeling the physical properties of hydrate‐bearing sediments: Considering the effects of occurrence patterns," Energy, Elsevier, vol. 278(C).
- Wei, Jianguang & Zhou, Xiaofeng & Shamil, Sultanov & Yuriy, Kotenev & Yang, Erlong & Yang, Ying & Wang, Anlun, 2023. "Lithofacies influence characteristics on typical shale pore structure," Energy, Elsevier, vol. 282(C).
- Fathy, Mohammad & Kazemzadeh Haghighi, Foojan & Ahmadi, Mohammad, 2024. "Uncertainty quantification of reservoir performance using machine learning algorithms and structured expert judgment," Energy, Elsevier, vol. 288(C).
- Tian, Weibing & Wu, Keliu & Chen, Zhangxin & Gao, Yanling & Li, Jing & Wang, Muyuan, 2022. "A relative permeability model considering nanoconfinement and dynamic contact angle effects for tight reservoirs," Energy, Elsevier, vol. 258(C).
- Nie, Bin, 2023. "Diffusion characteristics of shale mixed gases on the wall of microscale fractures," Energy, Elsevier, vol. 284(C).
- Mahdavifar, Mehdi & Roozshenas, Ali Akbar & Miri, Rohaldin, 2023. "Microfluidic experiments and numerical modeling of pore-scale Asphaltene deposition: Insights and predictive capabilities," Energy, Elsevier, vol. 283(C).
- Rezaeyan, Amirsaman & Kampman, Niko & Pipich, Vitaliy & Barnsley, Lester C. & Rother, Gernot & Magill, Clayton & Ma, Jingsheng & Busch, Andreas, 2024. "Compaction and clay content control mudrock porosity," Energy, Elsevier, vol. 289(C).
- Shi, Rui & Liu, Jishan & Wang, Xiaoming & Wei, Mingyao & Elsworth, Derek, 2021. "A critical analysis of shale laboratory permeability evolution data," Energy, Elsevier, vol. 236(C).
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:282:y:2023:i:c:s0360544223018200. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.