IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v273y2023ics0360544223006928.html
   My bibliography  Save this article

Effect of the quality of streamflow forecasts on the operation of cascade hydropower stations using stochastic optimization models

Author

Listed:
  • Liu, Yuan
  • Ji, Changming
  • Wang, Yi
  • Zhang, Yanke
  • Jiang, Zhiqiang
  • Ma, Qiumei
  • Hou, Xiaoning

Abstract

Determining the economic value of streamflow forecasts is essential to judging the operation of cascade hydropower systems and investing in improved forecasting systems. Previous analyses of the streamflow forecast value are mainly based on deterministic optimization strategies. This paper investigates the impact of long-term (10-day-ahead) streamflow forecasts on the operation of a cascade hydropower system using stochastic dynamic programming (SDP) and Bayesian stochastic dynamic programming (BSDP). Synthetic streamflow forecasts with different bias, variance, and precision are generated by the generalized maintenance of variance extension approach. A case study is performed to evaluate the performance of these strategies in terms of cumulative annual power revenue (CAPR) and system reliability (SR). The results show that, even when using the forecast with the largest uncertainty and bias, the stochastic optimization strategies increase at least 6.63 × 108 CNY in CAPR and 33.89% in SR compared with a reference strategy that uses no forecast information. The SDP performs best with forecast systems that have a negative bias and high accuracy. Compared with the SDP, BSDP increases at least 1.80 CNY in CAPR and 0.28% in SR and is better able to handle forecast uncertainty, and is insensitive to forecast bias.

Suggested Citation

  • Liu, Yuan & Ji, Changming & Wang, Yi & Zhang, Yanke & Jiang, Zhiqiang & Ma, Qiumei & Hou, Xiaoning, 2023. "Effect of the quality of streamflow forecasts on the operation of cascade hydropower stations using stochastic optimization models," Energy, Elsevier, vol. 273(C).
  • Handle: RePEc:eee:energy:v:273:y:2023:i:c:s0360544223006928
    DOI: 10.1016/j.energy.2023.127298
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223006928
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.127298?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. He, Zhongzheng & Zhou, Jianzhong & Qin, Hui & Jia, Benjun & He, Feifei & Liu, Guangbiao & Feng, Kuaile, 2020. "A fast water level optimal control method based on two stage analysis for long term power generation scheduling of hydropower station," Energy, Elsevier, vol. 210(C).
    2. Qiao-feng Tan & Guo-hua Fang & Xin Wen & Xiao-hui Lei & Xu Wang & Chao Wang & Yi Ji, 2020. "Bayesian Stochastic Dynamic Programming for Hydropower Generation Operation Based on Copula Functions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(5), pages 1589-1607, March.
    3. Ene, Seval & Küçükoğlu, İlker & Aksoy, Aslı & Öztürk, Nursel, 2016. "A genetic algorithm for minimizing energy consumption in warehouses," Energy, Elsevier, vol. 114(C), pages 973-980.
    4. Feng, Zhong-kai & Niu, Wen-jing & Cheng, Chun-tian, 2017. "Multi-objective quantum-behaved particle swarm optimization for economic environmental hydrothermal energy system scheduling," Energy, Elsevier, vol. 131(C), pages 165-178.
    5. Cheng, Chuntian & Su, Chengguo & Wang, Peilin & Shen, Jianjian & Lu, Jianyu & Wu, Xinyu, 2018. "An MILP-based model for short-term peak shaving operation of pumped-storage hydropower plants serving multiple power grids," Energy, Elsevier, vol. 163(C), pages 722-733.
    6. Gong, Yu & Liu, Pan & Ming, Bo & Li, Dingfang, 2021. "Identifying the effect of forecast uncertainties on hybrid power system operation: A case study of Longyangxia hydro–photovoltaic plant in China," Renewable Energy, Elsevier, vol. 178(C), pages 1303-1321.
    7. Jiang, Zhiqiang & Li, Rongbo & Li, Anqiang & Ji, Changming, 2018. "Runoff forecast uncertainty considered load adjustment model of cascade hydropower stations and its application," Energy, Elsevier, vol. 158(C), pages 693-708.
    8. Jiang, Zhiqiang & Ji, Changming & Qin, Hui & Feng, Zhongkai, 2018. "Multi-stage progressive optimality algorithm and its application in energy storage operation chart optimization of cascade reservoirs," Energy, Elsevier, vol. 148(C), pages 309-323.
    9. P. Mujumdar & B. Nirmala, 2007. "A Bayesian Stochastic Optimization Model for a Multi-Reservoir Hydropower System," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(9), pages 1465-1485, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Hongze & Li, Xumeng & Zhang, Yuanyuan & Zhao, Yihang & Pan, Jiaqi & Zhao, Huiru, 2024. "Declaration strategy of wind power and pumped storage participating in the power market considering multiple uncertainties," Energy, Elsevier, vol. 293(C).
    2. Zhou, Shuai & Wang, Yimin & Su, Hui & Chang, Jianxia & Huang, Qiang & Li, Ziyan, 2024. "Dynamic quantitative assessment of multiple uncertainty sources in future hydropower generation prediction of cascade reservoirs with hydrological variations," Energy, Elsevier, vol. 299(C).
    3. Shu, Xingsheng & Ding, Wei & Peng, Yong & Wang, Ziru, 2024. "Value of long-term inflow forecast for hydropower operation: A case study in a low forecast precision region," Energy, Elsevier, vol. 298(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tan, Qiao-feng & Lei, Xiao-hui & Wen, Xin & Fang, Guo-hua & Wang, Xu & Wang, Chao & Ji, Yi & Huang, Xian-feng, 2019. "Two-stage stochastic optimal operation model for hydropower station based on the approximate utility function of the carryover stage," Energy, Elsevier, vol. 183(C), pages 670-682.
    2. Xinyu Wu & Yuan Lei & Chuntian Cheng & Qilin Ying, 2023. "An Optimal Operation Method for Parallel Hydropower Systems Combining Reservoir Level Control and Power Distribution," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(4), pages 1729-1745, March.
    3. Jin, Xiaoyu & Liu, Benxi & Liao, Shengli & Cheng, Chuntian & Zhang, Yi & Zhao, Zhipeng & Lu, Jia, 2022. "Wasserstein metric-based two-stage distributionally robust optimization model for optimal daily peak shaving dispatch of cascade hydroplants under renewable energy uncertainties," Energy, Elsevier, vol. 260(C).
    4. Liu, Jia & Zeng, Peter Pingliang & Xing, Hao & Li, Yalou & Wu, Qiuwei, 2020. "Hierarchical duality-based planning of transmission networks coordinating active distribution network operation," Energy, Elsevier, vol. 213(C).
    5. Yang, Lichao & Cai, Zuansi & Li, Cai & He, Qingcheng & Ma, Yan & Guo, Chaobin, 2020. "Numerical investigation of cycle performance in compressed air energy storage in aquifers," Applied Energy, Elsevier, vol. 269(C).
    6. Shu, Xingsheng & Ding, Wei & Peng, Yong & Wang, Ziru, 2024. "Value of long-term inflow forecast for hydropower operation: A case study in a low forecast precision region," Energy, Elsevier, vol. 298(C).
    7. Shengli Liao & Yan Zhang & Jie Liu & Benxi Liu & Zhanwei Liu, 2021. "Short-Term Peak-Shaving Operation of Single-Reservoir and Multicascade Hydropower Plants Serving Multiple Power Grids," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(2), pages 689-705, January.
    8. Kim, Mo Se & Lee, Byung Sung & Lee, Hye Seon & Lee, Seung Ho & Lee, Junseok & Kim, Wonse, 2020. "Robust estimation of outage costs in South Korea using a machine learning technique: Bayesian Tobit quantile regression," Applied Energy, Elsevier, vol. 278(C).
    9. Müller, Danny & Knoll, Christian & Gravogl, Georg & Jordan, Christian & Eitenberger, Elisabeth & Friedbacher, Gernot & Artner, Werner & Welch, Jan M. & Werner, Andreas & Harasek, Michael & Miletich, R, 2021. "Medium-temperature thermochemical energy storage with transition metal ammoniates – A systematic material comparison," Applied Energy, Elsevier, vol. 285(C).
    10. Sun, Hong & Yu, Mingfu & Li, Qiang & Zhuang, Kaiming & Li, Jie & Almheiri, Saif & Zhang, Xiaochen, 2019. "Characteristics of charge/discharge and alternating current impedance in all-vanadium redox flow batteries," Energy, Elsevier, vol. 168(C), pages 693-701.
    11. Kumar, Pankaj & Banerjee, Rangan & Mishra, Trupti, 2020. "A framework for analyzing trade-offs in cost and emissions in power sector," Energy, Elsevier, vol. 195(C).
    12. Wang, Jinwen & Chen, Cheng & Liu, Shuangquan, 2018. "A new field-levelling procedure to minimize spillages in hydropower reservoir operation," Energy, Elsevier, vol. 160(C), pages 979-985.
    13. Amaral Lopes, Rui & Grønborg Junker, Rune & Martins, João & Murta-Pina, João & Reynders, Glenn & Madsen, Henrik, 2020. "Characterisation and use of energy flexibility in water pumping and storage systems," Applied Energy, Elsevier, vol. 277(C).
    14. Luo, Xiaoyuan & Wang, Xinyu & Zhang, Mingyue & Guan, Xinping, 2019. "Distributed detection and isolation of bias injection attack in smart energy grid via interval observer," Applied Energy, Elsevier, vol. 256(C).
    15. Zhiqiang Jiang & Yaqi Qiao & Yuyun Chen & Changming Ji, 2018. "A New Reservoir Operation Chart Drawing Method Based on Dynamic Programming," Energies, MDPI, vol. 11(12), pages 1-17, November.
    16. Katerina Spanoudaki & Panayiotis Dimitriadis & Emmanouil A. Varouchakis & Gerald A. Corzo Perez, 2022. "Estimation of Hydropower Potential Using Bayesian and Stochastic Approaches for Streamflow Simulation and Accounting for the Intermediate Storage Retention," Energies, MDPI, vol. 15(4), pages 1-20, February.
    17. Tan, Ting & Hu, Xinyu & Yan, Zhimiao & Zhang, Wenming, 2019. "Enhanced low-velocity wind energy harvesting from transverse galloping with super capacitor," Energy, Elsevier, vol. 187(C).
    18. He, Zhongzheng & Wang, Chao & Wang, Yongqiang & Wei, Bowen & Zhou, Jianzhong & Zhang, Hairong & Qin, Hui, 2021. "Dynamic programming with successive approximation and relaxation strategy for long-term joint power generation scheduling of large-scale hydropower station group," Energy, Elsevier, vol. 222(C).
    19. Daneshvar, Mohammadreza & Mohammadi-Ivatloo, Behnam & Zare, Kazem & Asadi, Somayeh, 2020. "Two-stage stochastic programming model for optimal scheduling of the wind-thermal-hydropower-pumped storage system considering the flexibility assessment," Energy, Elsevier, vol. 193(C).
    20. Chang, Soowon & Saha, Nirvik & Castro-Lacouture, Daniel & Yang, Perry Pei-Ju, 2019. "Multivariate relationships between campus design parameters and energy performance using reinforcement learning and parametric modeling," Applied Energy, Elsevier, vol. 249(C), pages 253-264.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:273:y:2023:i:c:s0360544223006928. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.