IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v268y2023ics0360544223000567.html
   My bibliography  Save this article

Thermochemical conversion of multiple alkali metals in food waste pellet with a core-shell structure

Author

Listed:
  • Cheng, Mingkai
  • Chen, Sheng
  • Lyu, Yue
  • Qiao, Yu
  • Xu, Minghou

Abstract

The transformation and release of alkali metals during pyrolysis of heterogeneous food waste with high Na and K contents are experimentally characterized with unresolved mechanisms. A food waste pellet with a core-shell structure was designed and the release of K/Na from the core and the retention of K/Na by the char shell were quantified for different pyrolysis conditions. The retention effect of the char shell on the gaseous alkali released from the pellet core is strong at 800 °C while becomes negligible at lower temperatures (<600 °C). Based on the X-ray diffraction and chemical fractionation results, we attribute the retention phenomenon to the formation of non-soluble and water-soluble char-Na/K. It is also found that water-soluble alkali chlorides tend to form solid solutions, Na·1002K·8998Cl and Na·9003K·0997Cl, during pyrolysis, which promotes the release of gaseous NaCl. Released NaCl then reacts with the K-aluminosilicate to generate gaseous KCl. In consequence, the overall release of KCl is significantly enhanced by the addition of NaCl when compared to the samples without NaCl addition. At last, new thermochemical conversion pathways of Na/K during pyrolysis are proposed, in which the role of solid solutions and the retention effect of the heterogeneous fuel structure are simultaneously considered.

Suggested Citation

  • Cheng, Mingkai & Chen, Sheng & Lyu, Yue & Qiao, Yu & Xu, Minghou, 2023. "Thermochemical conversion of multiple alkali metals in food waste pellet with a core-shell structure," Energy, Elsevier, vol. 268(C).
  • Handle: RePEc:eee:energy:v:268:y:2023:i:c:s0360544223000567
    DOI: 10.1016/j.energy.2023.126662
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223000567
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.126662?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Elbl, Patrik & Sitek, Tomáš & Lachman, Jakub & Lisý, Martin & Baláš, Marek & Pospíšil, Jiří, 2022. "Sewage sludge and wood sawdust co-firing: Gaseous emissions and particulate matter size distribution," Energy, Elsevier, vol. 256(C).
    2. Pirotta, F.J.C. & Ferreira, E.C. & Bernardo, C.A., 2013. "Energy recovery and impact on land use of Maltese municipal solid waste incineration," Energy, Elsevier, vol. 49(C), pages 1-11.
    3. Liu, Dianbin & Li, Wei & Li, Shiyuan & Song, Wenhao & Liu, Daofeng & Kong, Runjuan, 2019. "Transformation characteristics of sodium, chlorine and sulfur of Zhundong coal during O2/CO2 combustion in circulating fluidized bed," Energy, Elsevier, vol. 185(C), pages 254-261.
    4. Wienchol, Paulina & Korus, Agnieszka & Szlęk, Andrzej & Ditaranto, Mario, 2022. "Thermogravimetric and kinetic study of thermal degradation of various types of municipal solid waste (MSW) under N2, CO2 and oxy-fuel conditions," Energy, Elsevier, vol. 248(C).
    5. Smith Lewin, Caroline & Fonseca de Aguiar Martins, Ana Rosa & Pradelle, Florian, 2020. "Modelling, simulation and optimization of a solid residues downdraft gasifier: Application to the co-gasification of municipal solid waste and sugarcane bagasse," Energy, Elsevier, vol. 210(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Singh, Arashdeep & Basak, Prasenjit, 2022. "Conceptualization and techno-economic evaluation of municipal solid waste based microgrid," Energy, Elsevier, vol. 238(PB).
    2. Wang, Linzheng & Zhang, Ruizhi & Deng, Ruiqu & Liu, Zeqing & Luo, Yonghao, 2023. "Comprehensive parametric study of fixed-bed co-gasification process through Multiple Thermally Thick Particle (MTTP) model," Applied Energy, Elsevier, vol. 348(C).
    3. Hatem Abushammala & Muhammad Adil Masood & Salma Taqi Ghulam & Jia Mao, 2023. "On the Conversion of Paper Waste and Rejects into High-Value Materials and Energy," Sustainability, MDPI, vol. 15(8), pages 1-21, April.
    4. Mariyam, Sabah & Shahbaz, Muhammad & Al-Ansari, Tareq & Mackey, Hamish. R & McKay, Gordon, 2022. "A critical review on co-gasification and co-pyrolysis for gas production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    5. Durval Maluf Filho & Suani Teixeira Coelho & Danilo Perecin, 2022. "Opportunities and Challenges of Gasification of Municipal Solid Waste (MSW) in Brazil," Energies, MDPI, vol. 15(8), pages 1-13, April.
    6. Joshua Sunday Riti & Deyong Song & Yang Shu & Miriam Kamah & Agya Adi Atabani, 2018. "Does renewable energy ensure environmental quality in favour of economic growth? Empirical evidence from China’s renewable development," Quality & Quantity: International Journal of Methodology, Springer, vol. 52(5), pages 2007-2030, September.
    7. Wan, Kaidi & Vervisch, Luc & Gao, Zhenxun & Domingo, Pascale & Jiang, Chongwen & Xia, Jun & Wang, Zhihua, 2020. "Development of reduced and optimized reaction mechanism for potassium emissions during biomass combustion based on genetic algorithms," Energy, Elsevier, vol. 211(C).
    8. Żukowski, Witold & Jankowski, Dawid & Wrona, Jan & Berkowicz-Płatek, Gabriela, 2023. "Combustion behavior and pollutant emission characteristics of polymers and biomass in a bubbling fluidized bed reactor," Energy, Elsevier, vol. 263(PD).
    9. Lizheng Zhao & Yanfei Du & Yusen Zeng & Zhizhong Kang & Baomin Sun, 2020. "Sulfur Conversion of Mixed Coal and Gangue during Combustion in a CFB Boiler," Energies, MDPI, vol. 13(3), pages 1-19, January.
    10. Zhao, Jingyu & Hang, Gai & Song, Jiajia & Lu, Shiping & Ming, Hanqi & Chang, Jiaming & Deng, Jun & Zhang, Yanni & Shu, Chi-Min, 2023. "Spontaneous oxidation kinetics of weathered coal based upon thermogravimetric characteristics," Energy, Elsevier, vol. 275(C).
    11. Engin, Berrin & Kayahan, Ufuk & Atakül, Hüsnü, 2020. "A comparative study on the air, the oxygen-enriched air and the oxy-fuel combustion of lignites in CFB," Energy, Elsevier, vol. 196(C).
    12. Banerjee, Subhodeep & Shahnam, Mehrdad & Rogers, William A. & Hughes, Robin W., 2023. "Transient simulation of biomass combustion in a circulating fluidized bed riser," Energy, Elsevier, vol. 264(C).
    13. Qahtan Thabit & Abdallah Nassour & Michael Nelles, 2020. "Potentiality of Waste-to-Energy Sector Coupling in the MENA Region: Jordan as a Case Study," Energies, MDPI, vol. 13(11), pages 1-19, June.
    14. Ionica Oncioiu & Sorinel Căpuşneanu & Dan Ioan Topor & Marius Petrescu & Anca-Gabriela Petrescu & Monica Ioana Toader, 2020. "The Effective Management of Organic Waste Policy in Albania," Energies, MDPI, vol. 13(16), pages 1-16, August.
    15. Dong, Maifan & Feng, Lele & Qin, Botao, 2023. "Characteristics of coal gasification with CO2 after microwave irradiation based on TGA, FTIR and DFT theory," Energy, Elsevier, vol. 267(C).
    16. Konstantinos Petridis & Prasanta Kumar Dey, 2018. "Measuring incineration plants’ performance using combined data envelopment analysis, goal programming and mixed integer linear programming," Annals of Operations Research, Springer, vol. 267(1), pages 467-491, August.
    17. Rezaei, Mahdi & Ghobadian, Barat & Samadi, Seyed Hashem & Karimi, Samira, 2018. "Electric power generation from municipal solid waste: A techno-economical assessment under different scenarios in Iran," Energy, Elsevier, vol. 152(C), pages 46-56.
    18. Christiano B. Peres & Pedro M. R. Resende & Leonel J. R. Nunes & Leandro C. de Morais, 2022. "Advances in Carbon Capture and Use (CCU) Technologies: A Comprehensive Review and CO 2 Mitigation Potential Analysis," Clean Technol., MDPI, vol. 4(4), pages 1-15, November.
    19. Pan, Peiyuan & Peng, Weike & Li, Jiarui & Chen, Heng & Xu, Gang & Liu, Tong, 2022. "Design and evaluation of a conceptual waste-to-energy approach integrating plasma waste gasification with coal-fired power generation," Energy, Elsevier, vol. 238(PC).
    20. Moslem Yousefzadeh & Manfred Lenzen & Muhammad Arsalan Tariq, 2022. "Cooling and Power from Waste and Agriculture Residue as a Sustainable Strategy for Small Islands—A Case Study of Tonga," Sustainability, MDPI, vol. 15(1), pages 1-28, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:268:y:2023:i:c:s0360544223000567. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.