IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v266y2023ics0360544222032066.html
   My bibliography  Save this article

Dynamic evolution of shale permeability under coupled temperature and effective stress conditions

Author

Listed:
  • Li, Guoliang
  • Li, Guanfang
  • Luo, Chao
  • Zhou, Runqing
  • Zhou, Jian
  • Yang, Jijin

Abstract

The permeability of shale in unconventional subsurface reservoirs under high-temperature and high effective stress conditions is of great significance for evaluating the extraction efficiency of shale gas and determining reservoir development programs. In this study, a series of permeability experiments using nitrogen gas were conducted on a sample from the lower Longmaxi Formation over a range of temperature (25–100 °C), effective stress (22.5–52.5 MPa), and pore pressure (0.5–8 MPa) conditions. The dynamic relationships between permeability and temperature, effective stress, and pore pressure are analyzed in detail. The results show that the apparent permeability decreases approximately linearly with increasing pore pressure, temperature, and effective stress. The absolute permeability also decreases with increasing temperature or effective stress. Upon increasing the reservoir depth by 1000 m, the permeability decreases by an average of approximately 25%. Approximately two-thirds of this decline is caused by changes in the effective stress and approximately one-third by changes in temperature. The Klinkenberg parameter is also found to be positively correlated with temperature and effective stress. The results herein provide important guidance for evaluating permeability changes and the extraction efficiency for deep shale gas development.

Suggested Citation

  • Li, Guoliang & Li, Guanfang & Luo, Chao & Zhou, Runqing & Zhou, Jian & Yang, Jijin, 2023. "Dynamic evolution of shale permeability under coupled temperature and effective stress conditions," Energy, Elsevier, vol. 266(C).
  • Handle: RePEc:eee:energy:v:266:y:2023:i:c:s0360544222032066
    DOI: 10.1016/j.energy.2022.126320
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222032066
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.126320?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shi, Rui & Liu, Jishan & Wang, Xiaoming & Wei, Mingyao & Elsworth, Derek, 2021. "A critical analysis of shale laboratory permeability evolution data," Energy, Elsevier, vol. 236(C).
    2. Yang, Kang & Zhou, Junping & Xian, Xuefu & Zhou, Lei & Zhang, Chengpeng & Tian, Shifeng & Lu, Zhaohui & Zhang, Fengshou, 2022. "Chemical-mechanical coupling effects on the permeability of shale subjected to supercritical CO2-water exposure," Energy, Elsevier, vol. 248(C).
    3. Tian, Zhenhua & Wei, Wei & Zhou, Shangwen & Sun, Chenhao & Rezaee, Reza & Cai, Jianchao, 2022. "Impacts of gas properties and transport mechanisms on the permeability of shale at pore and core scale," Energy, Elsevier, vol. 244(PA).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wei, Jianguang & Li, Jiangtao & Zhang, Ao & Shang, Demiao & Zhou, Xiaofeng & Niu, Yintao, 2023. "Influence of shale bedding on development of microscale pores and fractures," Energy, Elsevier, vol. 282(C).
    2. Zhang, Jun, 2023. "Performance of high temperature steam injection in horizontal wells of heavy oil reservoirs," Energy, Elsevier, vol. 282(C).
    3. Wang, Huaijing, 2023. "Modeling of multiple thermal fluid circulation in horizontal section of wellbores," Energy, Elsevier, vol. 282(C).
    4. Wei, Jianguang & Fu, Lanqing & Zhao, Guozhong & Zhao, Xiaoqing & Liu, Xinrong & Wang, Anlun & Wang, Yan & Cao, Sheng & Jin, Yuhan & Yang, Fengrui & Liu, Tianyang & Yang, Ying, 2023. "Nuclear magnetic resonance study on imbibition and stress sensitivity of lamellar shale oil reservoir," Energy, Elsevier, vol. 282(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tian, Shifeng & Zhou, Junping & Xian, Xuefu & Gan, Quan & Yang, Kang & Zheng, Yi & Deng, Guangrong & Zhang, Fengshou, 2023. "Impact of supercritical CO2 exposure time on the porosity and permeability of dry and wet shale: The influence of chemo-mechanical coupling effects," Energy, Elsevier, vol. 270(C).
    2. Wang, Chongyang & Zhang, Dongming & Liu, Chenxi & Pan, Yisha & Jiang, Zhigang & Yu, Beichen & Lin, Yun, 2023. "Deformation and seepage characteristics of water-saturated shale under true triaxial stress," Energy, Elsevier, vol. 284(C).
    3. Liu, Bo & Mohammadi, Mohammad-Reza & Ma, Zhongliang & Bai, Longhui & Wang, Liu & Xu, Yaohui & Hemmati-Sarapardeh, Abdolhossein & Ostadhassan, Mehdi, 2023. "Pore structure evolution of Qingshankou shale (kerogen type I) during artificial maturation via hydrous and anhydrous pyrolysis: Experimental study and intelligent modeling," Energy, Elsevier, vol. 282(C).
    4. Dai, Xuguang & Wei, Chongtao & Wang, Meng & Ma, Ruying & Song, Yu & Zhang, Junjian & Wang, Xiaoqi & Shi, Xuan & Vandeginste, Veerle, 2023. "Interaction mechanism of supercritical CO2 with shales and a new quantitative storage capacity evaluation method," Energy, Elsevier, vol. 264(C).
    5. Wei, Jianguang & Fu, Lanqing & Zhao, Guozhong & Zhao, Xiaoqing & Liu, Xinrong & Wang, Anlun & Wang, Yan & Cao, Sheng & Jin, Yuhan & Yang, Fengrui & Liu, Tianyang & Yang, Ying, 2023. "Nuclear magnetic resonance study on imbibition and stress sensitivity of lamellar shale oil reservoir," Energy, Elsevier, vol. 282(C).
    6. Zhou, Aitao & Li, Jingwen & Gong, Weili & Wang, Kai & Du, Changang, 2023. "Theoretical and numerical study on the contribution of multi-hole arrangement to coalbed methane extraction," Energy, Elsevier, vol. 284(C).
    7. Donghuan Han & Tongwen Jiang & Wei Xiong & Shusheng Gao & Huaxun Liu & Liyou Ye & Wenqing Zhu & Weiguo An, 2024. "A New Method for Calculating the Influx Index in Gas-Drive Reservoirs: A Case Study of the Kela-2 Gas Field," Energies, MDPI, vol. 17(5), pages 1-23, February.
    8. Xiaoyu Ju & Xiaodong Zhao & Boyu Zhou & Ruixue Zhang & Xinyu Wu & Dafa Guo, 2023. "Identification of Reservoir Water-Flooding Degrees via Core Sizes Based on a Drip Experiment of the Zhenwu Area in Gaoyou Sag, China," Energies, MDPI, vol. 16(2), pages 1-14, January.
    9. Tian, Shifeng & Zhou, Junping & Xian, Xuefu & Gan, Quan & Zhang, Chengpeng & Dong, Zhiqiang & Kuang, Nianjie, 2023. "The impact of supercritical CO2 exposure time on the effective stress law for permeability in shale," Energy, Elsevier, vol. 284(C).
    10. Xiaoji Shang & Jianguo Wang & Huimin Wang & Xiaolin Wang, 2022. "Combined Effects of CO 2 Adsorption-Induced Swelling and Dehydration-Induced Shrinkage on Caprock Sealing Efficiency," IJERPH, MDPI, vol. 19(21), pages 1-22, November.
    11. Nie, Bin, 2023. "Diffusion characteristics of shale mixed gases on the wall of microscale fractures," Energy, Elsevier, vol. 284(C).
    12. Li, Jing & Xie, Yetong & Liu, Huimin & Zhang, Xuecai & Li, Chuanhua & Zhang, Lisong, 2023. "Combining macro and micro experiments to reveal the real-time evolution of permeability of shale," Energy, Elsevier, vol. 262(PB).
    13. Micheal, Marembo & Yu, Hao & Meng, SiWei & Xu, WenLong & Huang, HanWei & Huang, MengCheng & Zhang, HouLin & Liu, He & Wu, HengAn, 2023. "Gas production from shale reservoirs with bifurcating fractures: A modified quadruple-domain model coupling microseismic events," Energy, Elsevier, vol. 278(C).
    14. Wei, Jianguang & Li, Jiangtao & Zhang, Ao & Shang, Demiao & Zhou, Xiaofeng & Niu, Yintao, 2023. "Influence of shale bedding on development of microscale pores and fractures," Energy, Elsevier, vol. 282(C).
    15. Hou, Bing & Zhang, Qixing & Liu, Xing & Pang, Huiwen & Zeng, Yue, 2022. "Integration analysis of 3D fractures network reconstruction and frac hits response in shale wells," Energy, Elsevier, vol. 260(C).
    16. Qin, Chao & Jiang, Yongdong & Fu, Yong & Chen, Shiwan & Song, Xiao & Zuo, Shuangying & Wu, Daoyong & Zou, Niuniu, 2023. "Thermodynamic characteristics of high-pressure CH4 adsorption on longmaxi shale subjected to supercritical CO2-water saturation," Energy, Elsevier, vol. 263(PC).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:266:y:2023:i:c:s0360544222032066. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.