IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v263y2023ipes0360544222029607.html
   My bibliography  Save this article

Effect of NaCl presence caused by salting out on the heterogeneous-homogeneous coupling non-equilibrium condensation flow in a steam turbine cascade

Author

Listed:
  • Zhang, Guojie
  • Wang, Xiaogang
  • Wiśniewski, Piotr
  • Chen, Jiaheng
  • Qin, Xiang
  • Dykas, Sławomir

Abstract

Steam turbine is one of the most important components in fossil-fired and nuclear power plants, its efficiency is of great importance for saving energy and decreasing consumption. The steam density rapidly decreases when the steam expanses, and NaCl dissolved in steam starts precipitating. However, the presence of NaCl will not only affect the non-equilibrium condensation decreasing the steam turbine efficiency, but also erode the steam turbine blade reducing the steam turbine safety and shortening maintenance cycle. The main objective of the current work is to investigate the effect of the NaCl presence on the non-equilibrium condensation process and the loss in steam turbine cascade. Firstly, a non-equilibrium condensation model including homogeneous and heterogeneous condensation process is presented and its accuracy is checked in a steam turbine cascade by comparing with available experimental data. And the results show the accuracy and robustness of the model is quite trustworthy. Secondly, the influence of NaCl concentration on the non-equilibrium condensation flow is investigated in a steam turbine cascade. The results show that the NaCl presence has a significant effect on condensation flow. With the NaCl concentration increasing, the droplets nucleation rate decreases, diminishing the tiny droplet emerging, which weakens homogeneous condensation. As a result, the condensation loss caused by the homogeneous condensation decreases, and even the condensation loss caused by the homogeneous condensation becomes zero when the NaCl particle number reaches 7.5×1014 per kilogram in steam flow. However, the condensation loss caused by the heterogeneous condensation shows a reverse tendence, which increases with the NaCl concentration. At last, the condensation loss and entropy generation caused by the non-equilibrium condensation are checked in steam turbine cascade under different NaCl concentration conditions. The results show that the condensation loss reduces by 9.2% and increases by 42% at the 7.5×10141/kg and 10171/kg NaCl concentrations, respectively. Meanwhile, when the NaCl particle number reaches 7.5×1014 per kilogram, the isentropic efficiency is highest, about 0.884, compared with other cases considering condensation effect. This study proves that the NaCl concentration has a nonnegligible effect on the condensation loss and entropy generation, which must be considered in future steam turbine study.

Suggested Citation

  • Zhang, Guojie & Wang, Xiaogang & Wiśniewski, Piotr & Chen, Jiaheng & Qin, Xiang & Dykas, Sławomir, 2023. "Effect of NaCl presence caused by salting out on the heterogeneous-homogeneous coupling non-equilibrium condensation flow in a steam turbine cascade," Energy, Elsevier, vol. 263(PE).
  • Handle: RePEc:eee:energy:v:263:y:2023:i:pe:s0360544222029607
    DOI: 10.1016/j.energy.2022.126074
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222029607
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.126074?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hoseinzade, Davood & Lakzian, Esmail & Hashemian, Ali, 2021. "A blackbox optimization of volumetric heating rate for reducing the wetness of the steam flow through turbine blades," Energy, Elsevier, vol. 220(C).
    2. Zhang, Guojie & Zhang, Xinzhe & Wang, Fangfang & Wang, Dingbiao & Jin, Zunlong & Zhou, Zhongning, 2019. "Design and optimization of novel dehumidification strategies based on modified nucleation model in three-dimensional cascade," Energy, Elsevier, vol. 187(C).
    3. Aliabadi, Mohammad Ali Faghih & Lakzian, Esmail & Khazaei, Iman & Jahangiri, Ali, 2020. "A comprehensive investigation of finding the best location for hot steam injection into the wet steam turbine blade cascade," Energy, Elsevier, vol. 190(C).
    4. Strušnik, Dušan & Marčič, Milan & Golob, Marjan & Hribernik, Aleš & Živić, Marija & Avsec, Jurij, 2016. "Energy efficiency analysis of steam ejector and electric vacuum pump for a turbine condenser air extraction system based on supervised machine learning modelling," Applied Energy, Elsevier, vol. 173(C), pages 386-405.
    5. Zhou, Hong & Chen, Cheng & Lai, Jingang & Lu, Xiaoqing & Deng, Qijun & Gao, Xingran & Lei, Zhongcheng, 2018. "Affine nonlinear control for an ultra-supercritical coal fired once-through boiler-turbine unit," Energy, Elsevier, vol. 153(C), pages 638-649.
    6. Zhang, Guojie & Dykas, Sławomir & Li, Pan & Li, Hang & Wang, Junlei, 2020. "Accurate condensing steam flow modeling in the ejector of the solar-driven refrigeration system," Energy, Elsevier, vol. 212(C).
    7. Hu, Pengfei & Cao, Lihua & Su, Jingkai & Li, Qi & Li, Yong, 2020. "Distribution characteristics of salt-out particles in steam turbine stage," Energy, Elsevier, vol. 192(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Guojie & Yang, Yifan & Chen, Jiaheng & Jin, Zunlong & Majkut, Mirosław & Smołka, Krystian & Dykas, Sławomir, 2023. "Effect of relative humidity on the nozzle performance in non-equilibrium condensing flows for improving the compressed air energy storage technology," Energy, Elsevier, vol. 280(C).
    2. Zhang, Guojie & Wang, Xiaogang & Jin, Zunlong & Dykas, Sławomir & Smołka, Krystian, 2023. "Numerical study of the loss and power prediction based on a modified non-equilibrium condensation model in a 200 MW industrial-scale steam turbine under different operation conditions," Energy, Elsevier, vol. 275(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Momeni Dolatabadi, Amir & Moslehi, Jamshid & Saffari Pour, Mohsen & Mousavi Ajarostaghi, Seyed Soheil & Poncet, Sébastien & Arıcı, Müslüm, 2022. "Modified model of reduction condensing losses strategy into the wet steam flow considering efficient energy of steam turbine based on injection of nano-droplets," Energy, Elsevier, vol. 242(C).
    2. Zhang, Guojie & Wang, Xiaogang & Chen, Jiaheng & Tang, Songzhen & Smołka, Krystian & Majkut, Mirosław & Jin, Zunlong & Dykas, Sławomir, 2023. "Supersonic nozzle performance prediction considering the homogeneous-heterogeneous coupling spontaneous non-equilibrium condensation," Energy, Elsevier, vol. 284(C).
    3. Dolatabadi, Amir Momeni & Lakzian, Esmail & Heydari, Mahdi & Khan, Afrasyab, 2022. "A modified model of the suction technique of wetness reducing in wet steam flow considering power-saving," Energy, Elsevier, vol. 238(PA).
    4. Yang, Yan & Karvounis, Nikolas & Walther, Jens Honore & Ding, Hongbing & Wen, Chuang, 2021. "Effect of area ratio of the primary nozzle on steam ejector performance considering nonequilibrium condensations," Energy, Elsevier, vol. 237(C).
    5. Hu, Pengfei & Zhao, Pu & Li, Qi & Hou, Tianbo & Wang, Shibo & Cao, Lihua & Wang, Yanhong, 2023. "Performance of non-equilibrium condensation flow in wet steam zone of steam turbine based on modified model," Energy, Elsevier, vol. 267(C).
    6. Zhang, Guojie & Yang, Yifan & Chen, Jiaheng & Jin, Zunlong & Majkut, Mirosław & Smołka, Krystian & Dykas, Sławomir, 2023. "Effect of relative humidity on the nozzle performance in non-equilibrium condensing flows for improving the compressed air energy storage technology," Energy, Elsevier, vol. 280(C).
    7. Zhang, Guojie & Wang, Xiaogang & Jin, Zunlong & Dykas, Sławomir & Smołka, Krystian, 2023. "Numerical study of the loss and power prediction based on a modified non-equilibrium condensation model in a 200 MW industrial-scale steam turbine under different operation conditions," Energy, Elsevier, vol. 275(C).
    8. Hoseinzade, Davood & Lakzian, Esmail & Hashemian, Ali, 2021. "A blackbox optimization of volumetric heating rate for reducing the wetness of the steam flow through turbine blades," Energy, Elsevier, vol. 220(C).
    9. Tang, Yongzhi & Liu, Zhongliang & Li, Yanxia & Huang, Zhifeng & Chua, Kian Jon, 2021. "Study on fundamental link between mixing efficiency and entrainment performance of a steam ejector," Energy, Elsevier, vol. 215(PB).
    10. Hu, Pengfei & Meng, Qingqiang & Fan, Tiantian & Cao, Lihua & Li, Qi, 2023. "Dynamic response of turbine blade considering a droplet-wall interaction in wet steam region," Energy, Elsevier, vol. 265(C).
    11. Jie Wang & Hongfang Gu, 2021. "A Study of Moist Air Condensation Characteristics in a Transonic Flow System," Energies, MDPI, vol. 14(13), pages 1-12, July.
    12. Zhang, Guangming & Zhang, Chao & Wang, Wei & Cao, Huan & Chen, Zhenyu & Niu, Yuguang, 2023. "Offline reinforcement learning control for electricity and heat coordination in a supercritical CHP unit," Energy, Elsevier, vol. 266(C).
    13. Esmaeili, Mohammad & Moradi, Hamed, 2023. "Robust & nonlinear control of an ultra-supercritical coal fired once-through boiler-turbine unit in order to optimize the uncertain problem," Energy, Elsevier, vol. 282(C).
    14. Tongchana Thongtip & Natthawut Ruangtrakoon, 2021. "Real Air-Conditioning Performance of Ejector Refrigerator Based Air-Conditioner Powered by Low Temperature Heat Source," Energies, MDPI, vol. 14(3), pages 1-20, January.
    15. Chien, FengSheng & Ngo, Quang-Thanh & Hsu, Ching-Chi & Chau, Ka Yin & Mohsin, Muhammad, 2021. "Assessing the capacity of renewable power production for green energy system: a way forward towards zero carbon electrification," MPRA Paper 109667, University Library of Munich, Germany.
    16. Zhang, Hongfu & Gao, Mingming & Fan, Haohao & Zhang, Kaiping & Zhang, Jiahui, 2022. "A dynamic model for supercritical once-through circulating fluidized bed boiler-turbine units," Energy, Elsevier, vol. 241(C).
    17. Fan, He & Su, Zhi-gang & Wang, Pei-hong & Lee, Kwang Y., 2021. "A dynamic nonlinear model for a wide-load range operation of ultra-supercritical once-through boiler-turbine units," Energy, Elsevier, vol. 226(C).
    18. Wu, Zhenlong & Li, Donghai & Xue, Yali & Chen, YangQuan, 2019. "Gain scheduling design based on active disturbance rejection control for thermal power plant under full operating conditions," Energy, Elsevier, vol. 185(C), pages 744-762.
    19. Zhang, Guojie & Dykas, Sławomir & Li, Pan & Li, Hang & Wang, Junlei, 2020. "Accurate condensing steam flow modeling in the ejector of the solar-driven refrigeration system," Energy, Elsevier, vol. 212(C).
    20. Cao, Yan & Ayed, Hamdi & Hashemian, Mehran & Issakhov, Alibek & Jarad, Fahd & Wae-hayee, Makatar, 2021. "Inducing swirl flow inside the pipes of flat-plate solar collector by using multiple nozzles for enhancing thermal performance," Renewable Energy, Elsevier, vol. 180(C), pages 1344-1357.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:263:y:2023:i:pe:s0360544222029607. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.